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ABSTRACT 

Building software systems from reusable software components has been a goal 
of software engineers for nearly three decades. Despite progress, the realization of 
this goal remains surprisingly elusive. Expensive hardware systems such as aircraft, 
communication networks, and factory assembly lines are designed so that various 
subsystems (both hardware and software) can be removed and replaced in order to 
change the performance and functionality of the overall system. In a similar manner, 
it should be possible to change the behavior of a component-based software system 
in useful and predictable ways by removing and replacing entire components. 

In order to perform component-level maintenance, an engineer must understand 
not only the structural relationships but also the behavioral relationships among the 
component to be replaced, the system, and the replacement component. These behav- 
ioral relationships need to be clearly documented and available to engineers developing 
and maintaining component-based systems. 

This dissertation presents a small set of precisely defined relationships that con- 
cisely express behavioral relationships between software components. These rela- 
tionships may be used to provide implementers and maintainers with useful infor- 
mation about how components can and should be composed when integrated into 
component-based systems. Furthermore, these relationships encourage strict adher- 
ence to the well-established software engineering principles of modularity, information 
hiding, polymorphism, and extendibility. 

The relationships described are language-independent and may be encoded in a 
variety of ways using modern programming languages. The dissertation describes 
how interface-only components, templates, inheritance, and other language mecha- 
nisms may be used to encode these relationships. Specific examples are provided in 
RESOLVE/Ada95, a component-based software engineering discipline that uses Ada 
as an implementation language. 
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CHAPTER 1 

INTRODUCTION 

Building software systems from reusable software components has been a goal of 
software engineers for nearly three decades. At the 1968 NATO Conference On Soft- 
ware Engineering, M. D. Mcllroy proposed a software components industry [McI76]. 
Software components with well defined interfaces would be built and then reused in 
various software systems just as hardware components with standardized interfaces 
are used to construct physical systems. Despite definite progress, the realization of 
this goal remains surprisingly elusive [Tra95]. 

The motivation for component-based software engineering is even more compelling 
today than in the past. Today's software systems are extremely large and complex, 
requiring long and costly development efforts. Developing new systems, in large part 
by integrating existing software components (as opposed to building a system from 
scratch), clearly offers the potential to reduce system development time and expense. 
Furthermore, well designed component-based systems should be easier to maintain if 
software engineers are able to perform some maintenance tasks at the component-level 
rather than modifying individual lines of code. 

Expensive hardware systems such as aircraft, communication networks, and fac- 
tory assembly lines are designed so that various subsystems (both hardware and 
software) can be removed and replaced in order to change the performance and func- 
tionality of the overall system. Similarly, it should be possible to change the behavior 
of a component-based software system in useful and predictable ways by replacing 
some of the system's components with other components. If appropriate replacement 
components already exist, then the benefit of this approach is obvious. However, 
even if new components need to be developed, a systematic design and implemen- 
tation approach that supports the ability to substitute a new component for an old 
one without making other changes to the system offers advantages over the ad hoc 
alternatives. 



1.1     The Problem 

Ihr general problem this work addresses is the difficultly of designing and imple- 

mentinc: component-based systems that support component-level maintenance. While 

other engineering disciplines successfully apply the component-based approach to 

building and maintaining physical systems, it lias proven much more difficult to apply 

in software engineering. A primary reason for this difficulty is that distinct software 

components tend to be more tightly coupled with each other than most well-designed 

physical components. Furthermore, software- components are often designed with ex- 

tremely subtle dependencies that are not explicitly described. These dependencies 

may significantly complicate reasoning about program behavior [WH92]. 

1.1.1     Component Dependency Relationships 

In current software development practice, most software components arc designed 

to serve a specific purpose within the context of a specific soft wan-system. As a result, 

a component1 may depend on other components used in a specific system. When 

isolated from the context of a specific system, a well-designed component still mav 

need to depend on other components to achieve its purpose. When one component 

depends (,n another specific component as a result of its design, we refer to this tvpe 

of relationship as a dcsir/ii d<■pctidciicii or say that one component is coupled hi/ desir/n 
to another. 

Minimizing design dependencies (component coupling) has been recognized as a 

primary goal in software engineering since the early 1970's [SMC74]. By minimiz- 

ing a component's dependencies on other components, we make a component easier 

to understand, easier to reason about, and easier to reuse in a variety of contexts. 

I-or these reasons, minimizing design dependencies is an important prerequisite for 
successful component-level maintenance. 

When integrated into a software system, a component must be linked to other 

components in that system in order to serve its purpose. The final binding of one 

component's operations to another component's operations may take place statically 

when parts of the system are compiled or when pre-compiled modules are linked. 

Alternatively, one component's operations may be bound to the operations of another 

component dynamically, at run time. We refer to the dependencies that arise from 

integration of components into a specific system as iiitei/nit/on dependencies. 

One way to understand the difference between design dependencies and integra- 

tion dependencies is to consider a library of reusable software components.   All de- 

pendencies Inlirren individual components in the library an- design dependencies 

dependencies which,  in general, should be minimized for the reasons cited above. 

Henceforth, we will often use the term "component" in place of "software component" where it 
i- clear from context that the component in question is ;i software component. 



However, an individual component in the library may be built from many other com- 
ponents in the library. The dependencies between the sub-components composed 
together within a single library component are integration dependencies. In this case 
we can view a single, perhaps complex, component as a component-based system. 
Assuming a component and its sub-components are well-designed, there is no reason 
that the integration dependencies need to be minimized. In a well-designed system, 
the integration dependencies are just those dependencies necessary to construct the 
system. 

1.1.2    Component Behavior 

The reason for distinguishing between design dependencies and integration de- 
pendencies has to do with reasoning about the behavior exhibited by execution of 
component-based systems. For component-based maintenance of software to be vi- 
able, software engineers must be able to reason about how the behavior of a system 
changes when one component is substituted for another. That is, a maintainer of a 
component-based system needs to be able to determine whether substituting a new 
component for an old one will produce desired changes in system behavior without 
producing undesired changes. Reasoning about the behavior of a component-based 
system requires an understanding of the behavior of the system's components and 
how they are integrated together to form the system. However, if components are 
designed, implemented, and integrated into systems carefully, it is possible to reason 
in advance about some aspects of the post-integration behavior. 

Software components that support reasoning about certain specified aspects of 
behavior, independent of the specific system into which they are integrated, are said 
to support modular reasoning, and potentially, modular verification of correctness 
[SW94, DL96, SG95, EH094, EHM091, WH92]. Modular verification is the process 
of formally justifying that the execution of a software component will exhibit certain 
specified properties when integrated into any system that guarantees certain specified 
properties in return. The guarantees of the system (or client components) may be 
viewed as the rules specifying legal compositions of components. When components 
support modular reasoning, component-level maintenance is much easier. In fact, 
it has been argued that component-level maintenance is technically an intractable 
problem without the ability to reason modularly about components [WHH94]. When 
reasoning modularly about the behavior of a component, design dependencies, and not 
integration dependencies, determine what other components must be examined and 
understood in order to understand specified aspects of post-integration component 
behavior. 

As an example, consider an implementation of a stack designed to use an existing 
list component as its data representation. Stack operations such as Push and Pop can 
be implemented with list operations such as Insert and Remove.   In this case, the 



stuck component has a design dependency on a list component. Now assume that 
the stack implementation is generic it is parameterized by the type of items held 
by the stack. For the stack implementation to be integrated into a system, it must 
be instantiated with the type of item to be held on the stack. Assume that in a 

particular system, the stack component is instantiated with type Message defined in 
a component providing an abstract data type (ADT) for certain kinds of messages. In 
this particular system, the component formed by instantiating the stack with Message 
has an integration dependency, but no design dependency, on the message component. 

Now suppose the stack implementation is not coupled to any particular list im- 
plementation. Instead, assume it is coupled to a component providing an abstract 
description of a list implementation including the structural and behavioral speci- 
fications of the Insert and Remove operations. When integrated into a particular 
system, the stack implementation must be linked to a component supplying a partic- 
ular list implementation. (At integration time it might even be linked indirectly to 
one or more list implementations with final binding delayed until run time.) Within 
the context of a specific system, the component formed by instantiating the stack 
will have an integration dependency on the component supplying a particular list 
implementation. Here the integration dependency results directly from the design 
dependency. Note that the integration dependency is a much stronger coupling in 
this case since it requires commitment to one particular implementation whereas the 
desiun dependency docs not. 

In order to full)/ understand the behavior of an integrated stack component, we 
might need to understand aspects of the behavior of the components providing the 
stack item type and list implementation. However, to a great extent, we can un- 
derstand the behavior exhibited by the stack operations without knowing anvthing 
about the type of items held by the stack. Furthermore, we can understand how and 
why the stack operations work correctly without knowing precisely how the list is 
implemented. We do. however, have to understand some aspects of the behavior of 
any list implementation that may be supplied. That is. we have to understand the 
ramifications of the design coupling to a component describing list behavior. The ken- 
point is that we can reason about many important aspects of the execution behavior 
produced by the stack component before it is integrated into a svstem. 

1.1.3    Behavioral Relationships 

Modern programming languages provide mechanisms such as interface-onlv com- 
ponent:,, generics (templates), inheritance, and run-time dispatching of operations 
that  support   various forms of abstraction.    When  used  in a disciplined manner. 



these and other language mechanisms can help reduce design dependencies and en- 
code behavioral relationships between components. For example, inheritance is of- 
ten used to encode the behavioral relationship of subtyping [LW94]. Use of inher- 
itance, however, typically increases design dependencies between components, and 
thus should be used with great care. Few programming languages provide mecha- 
nisms that directly support specification of component behavior. Rare exceptions 
— primarily research languages — include Gypsy [AGBH77], Alphard [Sha81], and 
RESOLVE [SW94]. To support reasoning about program behavior, programming lan- 
guages may be augmented with a behavioral specification language (see, for example, 
[SW94, DL96, Jon90, LvHKB087]). 

Software engineers maintaining component-based systems need to understand 
both when it is possible and when it is appropriate to substitute one component 
for another in a software system. The possibility of component substitution is de- 
termined in current programming languages by syntactic constraints. That is, if two 
components share a common structural interface, then it might be possible to substi- 
tute one for the other. The appropriateness of substituting one component for another 
depends on the behavioral properties of the two components and the desired changes 
in system behavior. Thus it is important for system maintainers to understand the 
behavioral relationships between components as well as the dependency relationships 
between components. 

The purpose of studying the software component relationships described in this 
work is to concisely express design dependencies and behavioral relationships between 
software components. These relationships provide implementers and maintainers with 
useful information about how components may and should be linked together when 
integrated into component-based systems. Furthermore, these relationships support 
the goals of minimizing design dependencies and developing components about which 
it is possible to reason modularly. Thus software component relationships can aid 
maintainers in determining when one component may appropriately be substituted 
for another. In doing so, they provide a useful framework supporting maintenance of 
component-based software. 

1.2    The Thesis 

The work presented in this dissertation is based on three assumptions. First, we 
assume that complex software systems will be built, to a large extent, from existing 
software components. Second, we assume that maintenance of component based 
systems will be more cost-effective when performed at the component level rather 
than at the individual line-of-code level. Finally, we assume that large component- 
based systems may be built from components about which it is possible to reason 

modularlv. 



The first assumption is easily justified since component-based software reuse is 
already beim;- applied in industry. Studies have demonstrated that the economies of 
software reuse make this approach to software development very compelling [Pre07. 
p. i \, . .Justification of the second assumption is based on the observation that com- 
ponent replacement is generally easier than internal component modification when 
replacement components are available. When replacement components are not avail- 
able, either existing components must be modified or new components developed from 
scratch. Both of these options are considerably more expensive than reusing exist- 
ing components [ScISf). p. 222]. The third assumption seems plausible based on the 
research results cited earlier. To date, there are very few examples in the literature 
of non-trivial applications constructed from components designed specifically to sup- 
port modular reasoning. However, commercial software packages developed bv Joe 
Holling.worth serve as proof-of-principle [HolOT]. We believe that as the importance 

of modular reasoning becomes more widely understood, other development efforts 
will further validate the third assumption. 

Based on these assumptions, this dissertation addresses the following research 
issues. 

• \\ hat relationships between software components do designers need to explicitly 
document to best support component-level maintenance of component-based 
systems? 

• Mow can these component relationships be used to support component-level 
maintenance? 

• How can these relationships be expressed in modem programming languages? 

In answering these questions, this dissertation defends the following thesis: 

Component-level maintenance of software systems may be based on a 
small set of behavioral and dependency relationships between software 
components. Furthermore, these relationships can be encoded with the 
language mechanisms provided by modern programming languages, al- 
though not as easily as should be possible. 

1.3    Related Research 

The research presented in this dissertation builds upon RESOLYE-related re- 
search TlarOO. HWni. EdwDO. MWOO. WOZ01. H<>102. SW91. EdwO.",. Wei97] per- 
formed by the Reusable Software Research Group at The Ohio State University. 
I he RESOLVE language ami discipline uniquely address many of the fundamental 
problems in component-based software engineering.    In particular, the RESOLVE 

f> 



approach supports formal behavioral specification of components and efficient com- 
ponent implementations about which it is possible to reason modularly. The property 
of modular verifiability, exhibited by RESOLVE components, is critical to reasoning 
about the behavior of component-based systems. Many of the commonly practiced 
object-oriented techniques, however, fail to support the property of modular verifia- 
bility [Sny86, Edw93]. 

The RESOLVE language primarily supports component adaptation through para- 
metric polymorphism (generics). The ACTI model of software subsystems developed 
by Edwards provides a formal model of the semantics of parameterized (and non- 
parameterized) components. ACTI has been used in defining a formal semantics for 
RESOLVE [Edw95]. RESOLVE, and especially ACTI, have been influenced by the 
research into parameterized programming by Goguen[Gog84, Gog86]. The research 
we present in this dissertation adopts the basic component model of ACTI. 

During the past decade, most research in component-based software has focused 
on object-oriented techniques. Widely used programming languages such as C++ 
[Str93] and the 1995 revision to Ada2 [Int95b] provide language mechanisms sup- 
porting both parametric polymorphism and object-oriented techniques. Several well- 
known authors have written extensively about the construction of object-oriented, or 
"object-based", software components. Grady Booch's "Booch Components", imple- 
mented in Ada83 [Boo87], have served as the most widely adopted model for software 
components written in Ada. After his initial work in Ada, Booch re-implemented 
his component library in C++. In describing the design of his C++ components 
[Boo90, Boo94], Booch discussed the use of object-oriented language mechanisms and 
templates. Banner and Schonberg [BS92] examined implementing a software compo- 
nent library in Ada9X, a preliminary version of the 1995 Ada definition. Building 
upon this work and with concurrence from Booch, David Weiler has begun imple- 
menting "The Ada 95 Booch Components" [Wel95]. Weiler is currently implement- 
ing these components using Ada's new object-oriented features in a fashion similar 
to Booch's use of C++'s object-oriented features. Recent work by Magnus Kempe 
[Kem95] examining the use of Ada's new language mechanisms for implementing 
software components also appears to be heavily influenced by Booch's work. 

As pointed out by Hollingsworth [Hol92], Booch's original Ada components fail 
to satisfy the goals of the RESOLVE approach. For example, Booch's polylithic 
components (e.g., list, tree, and graph) rely on reference semantics. As a result, 
systems using these components are not amenable to modular reasoning. Booch's 
C++ components and the Ada approaches described by Weiler and Kempe also fail to 
use language mechanisms in a manner consistent with modular reasoning. Aside from 
the work of Falis discussed below, there does not appear to be any published research 

2In this document, the term "Ada", without further qualification, is used to refer to the 1995 
definition of the Ada programming language, previously known as Ada9X, and sometimes called 
Ada 95. 



into how the new language mechanisms of Ada can he applied to the construction of 
modularly-verifiable component-based software. 

Another well-known author who has written extensively about reusable« software 
components is Bertrand Meyer [Mey8S. Mey91]. Meyer is a leading advocate of 
object-oriented programming and is the principal developer of the Eiffel program- 
mum language ;MeySS<. Meyer [MeySfi] and Seidewitx [Sein 1] have written about the 
relative strengths and weaknesses of inheritance and generics (parametric polymor- 
phism!. Both authors conclude that tin- two approaches may be used in a comple- 
mentary manner. However, there appears to be very little research into the combined 
application of these two approaches, especially for practical imperative programming 
languages such as Ada and C+ + . 

1 lie Ada language-specific aspects of this work presented in Chapter 5 share goals 
similar to those of work on the development of the RESOLVE/C+ + (RCPP) disci- 

pline \\ei07 . The I?An.") approach presented in Chapter 5. however, differs from the 

RCPP approach in several aspects. First, in Chapter 1 we focus on understanding 
how a wide variety of language1 mechanisms may be used best in component-based 
software engineering. Second, the research primarily investigates the language mech- 
ani<nis of Ada. which differ in many ways from those of C+ + . Third, the approach 
to embedding the RESOLVE language into Ada is fundamentallv different from that 
used bv RCPP. 

The RCPP discipline relies heavily on the use of preprocessor macros that serve 
to make the -source" language of RCPP appear substantially different from normal 
C--. The benefits of this approach include making the RESOLVE and ACTI per- 
spectives more explicit in the source language, hiding annoying C++ syntax, and 
improving maintainability by reducing source redundancy. The approach to RA9Ö 
presented in Chapter .", docs not require the use of a preprocessor. Following the RA9Ö 
discipline entails coding directly in Ada. One benefit of this approach is that RAOö 
Uses language mechanisms of Ada largely as they were intended to be used. This 
approach should make explaining the rationale for RAO-Vs use of various language 
mechanisms easier. Another benefit is that maintenance of RAOÖ code is mainte- 
nance of Ada code. Thus, analysis and maintenance tools available for Ada should 
be directly applicable to RA9Ö source code. Finally, a possible practical benefit of 
this approach is that RA9Ö may be more accessible to experienced Ada programmers 
than RCPP is to experienced C++ programmers. 

I he research presented in Chapter ö also is related to an early exploration of 
mapping RESOLVE to the 199Ö version of Ada by Ed Falis at Thompson Software 
TalDÖ . Palis' work centers around the use of the bridge and factory design patterns 
GH.1\ 9.") to support run-time selection of component operations in Ada. Falis' work 

influenced work by Edwards on run-time selectable (Level 2) components now incor- 
porated into RCPP. RA9Ö has borrowed some ideas from Falis' work, but takes a very 
different approach. The RAOö discipline presented in Chapter 5 does not use dynamic 



binding mechanisms. The work of Falis assumes that dynamic binding will be used. 
While we discuss dynamic binding in Chapter 4, its incorporation into RA95 would 
add significant complexity and does not appear necessary to encode the component 
relationships presented in Chapter 3. 

Another area of related RESOLVE research is the work by Joe Hollingsworth 
on the RESOLVE/Ada discipline based on the 1983 version of Ada (RA83) [Hol92]. 
Hollingsworth's research demonstrated that the RESOLVE approach could be applied 
using a programming language other than RESOLVE, namely, Ada83. Since the 
development of RA83, both RESOLVE and Ada have changed. The major change 
to RESOLVE has been the incorporation of many of the ideas of the ACTI model 
of subsystems [Edw95]. The ACTI model provides a formally-based framework for 
describing software components and the relationships between components. In 1995, 
a major revision to the Ada language was finalized and a new language standard 
was established. The revised Ada includes many new language mechanisms that 
are useful in describing components and component relationships as characterized by 
ACTI. While the RA95 discipline preserves many aspects of RA83, the focus of this 
research has been on the use of Ada's new language mechanisms and exploration of 
ACTI-inspired component relationships. 

Many researchers have worked on formal reasoning about object-oriented pro- 
grams. Most of this related work focuses on the formal definition of behavioral 
subtyping [CW85, LW90, LW94, SG95, DL96]. The Theta programming language 
[LDGM95, LCD+94], developed at MIT, incorporates ideas from this work. Theta 
provides separate mechanisms for type hierarchy, parametric polymorphism, and in- 
heritance. The separation of type hierarchy from inheritance allows related types to 
have independent implementations and unrelated types to have related implementa- 
tions [LCD+94, p. 1]. RESOLVE also provides this flexibility, but the inheritance- 
based type systems of Ada and C++ are more restrictive. 

1.4    Organization 

The remainder of this dissertation is organized as follows. In Chapter 2, we 
develop a framework and notation for describing behavioral relationships between 
software components and identify fundamental component relationships. In Chap- 
ter 3, we define a useful set of component relationships based on those identified in 
Chapter 2 and describe how they may be used to support component-based soft- 
ware development and maintenance. In Chapter 4, we discuss how the relationships 
described in Chapter 3 may be encoded using the language mechanisms of modern 
programming languages. In Chapter 5, we describe the RA95 discipline and show 
how the component relationships presented in Chapter 3 are encoded in RA95. Fi- 
nally, Chapter 6 summarizes the research presented in this dissertation, describes the 
contributions made by this work, and proposes suggestions for further research. 
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CHAPTER 2 

A MODEL OF BEHAVIORAL RELATIONSHIPS 
BETWEEN SOFTWARE COMPONENTS 

In this chapter we develop a model of behavioral relationships between software 
components. These relationships serve as a basis from which we derive the more 
practical set of relationships described in Chapter 3. Section 2.1 discusses the re- 
quirements for interchangeable software components and motivates the need for the 
relations developed in the subsequent sections. Section 2.2 describes how components 
and their associated behavior are modeled. In Sections 2.3 and 2.4 we define confor- 
mance and dependency relations in terms of the behaviors described by components. 
Section 1.3 reviews related research and Section 2.5 summarizes the chapter. 

2.1    Interchangeable Components 

As briefly discussed in Chapter 1, one of the differences between most physical 
systems and software systems is the difficulty involved in replacing whole components 
and consistently achieving a desired effect. For example, consider a common table 
lamp composed of components such as a base, a switched socket, an electrical cord, 
a shade, and light bulb. We can change the behavior of the lamp simply by replac- 
ing one light bulb with another. Much more complex physical systems offer similar 
possibilities. For example, most desktop computers are easy to "upgrade" by adding 
new components or by replacing existing components in toto. In fact, many desktop 
computers are designed so it is possible to remove the central processing unit and 
replace it with a newer, more powerful version. We would like to be able to maintain 
component-based software similarly. 

2.1.1     Component-Level Maintenance 

Component-level maintenance involves changing the behavior of a software sys- 
tem in useful and predictable ways by removing and replacing software components 
rather than by modifying individual lines of executable code. Reasons for changing 
a system's behavior include: 
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• improving system performance 

• adding new functionality. 

• adapting the system to new hardware or system software, and 

• correct ins defects in existing functionality. 

I he first two of these activities are called perfective maintenance. The last two are 

called (irlnptirr maintenance and corrective maintenance, respectively. According to 

one widely-cited study of nearly 000 software projects, approximately 70'/i of main- 

tenance costs       about half of the total life-cycle costs of typical software systems 

are attributable to perfective and adaptive maintenance [LBSBSO]. C'learlv anv 

approach that makes it easier for software engineers to improve system performance. 

extend system functionality, and adapt systems to new environments can have a sig- 

nificant impact in reducing software costs. Component-level maintenance can reduce 

the effort required for each of these- maintenance tasks. 

For component-level maintenance to be possible, software engineers must be able 
to answer the following question. 

Given system (or component) P which uses component Y. can component 

A be substituted for Y in P and maintain all of the properties that P 
required of )".' 

In order to answer this question on a systematic basis, three issues must be ad- 

dressed: the structural conformance of the new component, the behavioral confor- 

mance of the new component, and the mechanics of the substitution. Wo discuss 

conformance issues in this chapter. We discuss mechanisms supporting the mechan- 

ics of substitution in Chapter 1 and provide examples in Chapter 5. 

Software components must be designed and implemented so that system main- 

tained-, can substitute one component for another and understand the effects of doing 

so on the system's behavior. A key challenge is to make it easier for a maintainer to 

achieve desired changes in system behavior without causing any undosired changes 

in behavior. For example, to improve execution time, we might want to replace one 

component with another that provides a more efficient implementation of some func- 

tionality. While it is important that the change improves system performance, it 

is ju<t as important that use of the new component preserves the original svstem 

functionality. In practice, the question asked above is difficult to answer correctly 

and. in fact, is undecidable in the general case. Nevertheless, if software components 

are designed and implemented with the objective of substitutability in mind, this 

question is much easier to answer accurately. The principal reason for studying the 

component relationships defined in this dissertation is to enable software engineers to 
answer this question more easily. 
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2.1.2    The Role of Interface Specifications 

Well-specified component interfaces make possible component-level maintenance 
of physical systems. Furthermore, standardization of interface specifications makes 
component-level maintenance of most physical systems commercially viable. An in- 
terface specification describes the requirements that a component must satisfy in 
order to interact with other "external" components, that is, other components in its 
environment. Note that an interface specification must address requirements on both 
sides of the interface. For example, in the case of a light bulb, the standardized inter- 
face specification must describe the width, depth, and threading (and other details) of 
a light bulb base. Such a specification places requirements both on conforming light 
bulbs and on lamp sockets designed to use conforming light bulbs. That is, both light 
bulb designers and light bulb socket designers must refer to the common interface 
specification in order for component-level maintenance of lamps to be possible. 

The importance of well-defined interfaces for software components has been un- 
derstood for many years. Many programming languages provide support for defining 
software component interfaces. However, most programming language support for 
interface specifications only addresses structural aspects of the interface, and not be- 
havioral aspects. For some physical components, such as nuts and bolts, interface 
specifications only need to address structural issues. However, even for a component 
as simple as a light bulb, an interface specification may need to address more than 
purely structural requirements. The light bulb interface specification may need to 
specify minimum and maximum voltages and amperages required for proper bulb 
illumination and state that when an appropriate current is applied, the light bulb 
will illuminate. In the case of computer components, interface specifications clearly 
must describe much more than pin counts, shapes and sizes in order for components 
to interact successfully. 

To determine if one software component may be substituted appropriately for an- 
other, both structural conformance and behavioral conformance must be addressed. 
Structural conformance is concerned with the names and signatures of component fea- 
tures. In many programming languages, the structural conformance of a component 
to an interface specification is determined partly by type checking. In statically- 
typed languages, structural conformance is checked either by the compiler or by the 
linker when a component is integrated into a system — prior to runtime. Behavioral 
conformance is concerned with whether a component's operations, when executed, 
will produce the desired (specified) effect. Checking behavioral conformance is, in 
general, much more difficult than checking structural conformance. The principal ap- 
proaches to checking behavioral conformance are testing and verification techniques 
(both formal and informal). Both approaches have their strengths and weaknesses. 
Whichever approach is used (a combination of verification and testing is typically the 
best strategy), interface specifications that clearly describe behavioral requirements 
are essential. 
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2.1.3    Substitiitability 

Assume that two components A" and )' have well-specified structural and behav- 
ioral interfaces describing the services they provide and the services they require from 
any system into which they are integrated. It woidd be useful to know whether A" 
is substitutable for V in «//// program (component-based system). Unfortunately, 
without knowing the specific behavior that some system exports of V. wo cannot de- 
termine if A can be substituted for )' except in a few degenerate cases. If A" and }' are 
identical components (two different components with different names, but identical 
content) then we may safely conclude that A' is substitutable for V in all programs. 
However, in this case, there- is clearly no reason to make the substitution since it 
should not change the behavior of the system in any respect. A' and U might also 

lie nearly identical except that for some inputs an operation supplied by }' goes into 

an infinite loop whereas the corresponding operation in A" does not. If we make the 

reasonable assumption that no •'correct" program would enter an infinite loop, then 
we may conclude in this case that A" may be substituted for )' in any (correct) pro- 
gram. Despite the fact that A" and )' implement different behavior, the assumption 
ensures that no correct program would use )' or A in a way that could distinguish 
between the behaviors they implement. 

An embedded real-time system might place timing and resource utilization re- 
quirements on tin- components it uses. In this case, simply comparing the functional 
behavior of two components is not sufficient for determining substitiitability. For 
example, consider the case where A* is identical to V except that it has an additional 
operation that does not affect any state observable by any of the component's other 
operations. Hero the behavior provided by A might appear to be a sub-behavior of 
that provided by )'. However, if the increased memory required to store the code of 
A s additional operation (whether or not it is used) exceeds the resource utilization 
limits that a program places on component )'. then A" is not substitutable for U in 
that system. Fortunately, most systems do not bump up against extremely strict 
limits on resource utilization and operation execution time. 

In general, then, the only way to determine if component A is substitutable for 
component V is within the context of a specific system where the requirements for }'. 
and thus for any component replacing )'. are clearly understood. The requirements 
a system or component has on another component may be expressed in terms of an 
interface specification. That is. if program P can use any component that provides 
the behavior described by interface specification S. then P should not be encoded to 
depend on a specific component, say for example. )'. If we encode P in such a way 
that it may be linked to any component implementing the behavior described by S. 
then component-level substitution becomes possible. If both X and T conform to 
interface specification .S'. then A may be substituted for V -with respect to S in anv 
program P. 
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Figure 2.1: Conformance and Requirement Relationships - Physical Components 

Consider, again, the analogy to a table lamp. A standard component integrated 
into most table lamps is a switched bulb socket. A lamp manufacturer is likely to 
select the kind of socket to be used in a particular lamp from a catalog of existing 
bulb sockets. A key factor in the selection of a socket is that it be designed to accept 
standard light bulbs. A description of the bulb socket selected should specifically state 
that the socket requires a bulb conforming to the standard light bulb specification. 
The socket description clearly should not require a specific brand of bulb. In addition 
to varying by brand, acceptable light bulbs may also vary in power consumption, 
radiance, color, durability, and other characteristics not fixed by the standard light 
bulb specification. Since many different kinds of light bulbs are designed using this 
specification, bulb sockets that require bulbs that conform to this specification will 
work with many different kinds of light bulbs. 

Figure 2.1 depicts the conformance and requirement relationships involving light 
bulbs, light bulb sockets, and a light bulb specification. The arrows on the bottom 
indicate that the light bulbs shown satisfy the requirements described by the spec- 
ification. The arrows on the top indicate that the bulb sockets require a light bulb 
(any light bulb) that conforms to the specification. Together, these two design rela- 
tionships allow construction of lamps for which component-level maintenance (bulb 
replacement) is possible. 

The analogy between physical components and software components is not perfect. 
Nevertheless, the role of behavioral interface specifications for software closely par- 
allels the role of interface specifications for physical components. Figure 2.2 depicts 
relationships between software components analogous to those shown in Figure 2.1 
for physical components. The shaded rectangular boxes at the bottom of the figure 
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Queue Implemented 
With List 

List Implemented 
With Array 

List 
Behavioral 
Interface 

conforms to List Implemented 
With Linked Nodes 

Fi.eure 2.2: Conformance and Requirement Relationships     Software Component.- 

(lepict two different implementations of a list data type that conform to the list inter- 

fart- specification depicted by the oval box in the renter. The two boxes at the top of 

the diauram depict two different components each of which require an implementation 

conforming to the list specification. The stack and queue implementations on the top 

are ein nf components with respect to their dependency on a list implementation. 

Once integrated into a software system, each of these components must be linked to 

a specific list implementation. However, designing mul iinpieineiitiinj client compo- 

nents so that they depend on behavioral interface specifications for the components 

they use rather than on specific implementations, makes it possible to substitute one 

implementation of the specified behavior for another. 

2.2    Components and Behavior 

In this section we describe a model of software components and the behavior 

associated with the modeled components. Thus far. we have been using the term 

■•.software component" informally to refer to a unit of code which might be incorpo- 

rated into an executable software system. In the model, we broaden the definition of 

".software component" to include behavioral interface specifications and parameter- 

ized modules called templates. The model places very few constraints on the specific 

form and content of components, in order to maintain language independence. But 

for the purposes of understanding the model, considering a component as either a 

specification or as an implementation of an abstract data type (ADT) will not lead 

the reader astray. In Chapter -1. we discuss specific ways in which components inav 

be represented using specification and programming languages. 
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The model of component relationships described in this chapter consists of four dis- 
joint sets of software components: CI (concrete instances), CT (concrete tem- 
plates), AI (abstract instances), and AT (abstract templates). The model also 
includes the set M of mathematical theory modules (math modules, for short). 
For convenience, we define the set C = CI U CT U AI U AT of all modeled 
components and the set U — C U M of all modeled syntactic units. Elements of CI 
and CT are concrete components that describe how the behavior of operations is im- 
plemented. Elements of AI and AT are abstract components that serve as behavioral 
interface specifications. The components in CT and AT are templates while those in 
CI and AI are not (they are instances). Elements of M define mathematical theories 
which provide the foundation for defining the semantics of all elements of C. 

All units in U must be encoded in some language L appropriate for specifying 
and implementing program behavior of interest. L may be a single integrated speci- 
fication language such as RESOLVE [SW94] or the result of integrating independent 
specification and programming languages such as the approach used by Larch [GH93] 
and as exemplified by the RESOLVE/Ada95 components shown in Chapter 5. 

The classification of software components into these four categories is based on 
Edwards' ACTI model of software subsystems [Edw95]. ACTI stands for Abstract and 
Concrete Templates and Instances. However, in the ACTI model, the term "concrete 
instance" refers to the run-time denotation of an executable subsystem. In contrast, 
we use the term "concrete instance" to refer to the syntactic encoding of a component 
for which the run-time semantics may be modeled as an ACTI concrete instance. 
Similarly, we use the terms "concrete template", "abstract instance", and "abstract 
template" to refer to syntactic units of software whereas ACTI uses the terms to refer 
to a denotational semantics-based representation of the run-time behavior described 
by the corresponding components. The ACTI model does not define a separate unit 
corresponding to math modules. Instead, ACTI components include specification 
adornment environments [Edw95, p. 85] which may be used to construct components 
that serve the same purpose as our math modules. 

The model requires that every unit in U have a unique unit name. When 
referring to individual units, we shall use lower case identifiers such as u, m and c\ 
to denote unit names. A unit's content is the string of symbols associated with a 
unit name and encoding a math module or a component. The only syntactic aspect 
of a unit's content that is modeled directly is its context. The context of a unit is 
the finite set of all externally defined units upon which a unit directly depends. 

Any unit in U may be defined directly or indirectly in terms of a finite number 
of other units in U. If one unit, say U\ is defined in terms of another unit, say u<i, 
then U\ depends on u2. Components in C may depend on math modules in M and 
other components in C. Math modules may only be defined in terms of other math 
modules in M. In order for u\ to depend directly on u2, the name of unit u2 must 
appear in the content of unit u\.   That is, when referring to an implementation or 
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specification element which ux does not itself define. iq must explicitly name the unit 
defining the referenced clement. Note that no unit depends directly on itself. We 
refer to a unit's context by using tin- projection function ctx:f —> VjC (where V;l~ 
denotes the set of all finite subsets off) defined as follows: 

ctx(») = {//' G r -{»}: (/ depends directly on //'} \2.\) 

We also require that all units in V be vcll-formcrl with respect to the syntax of 
the language L. Only well-formed units arc assigned a meaning as discussed in the 
following sections, figure 2.3 depicts the five syntactic categories of units in language 
L discussed in this section. 

2.2.1     Implementation Components 

1 lie set CI of concrete instances consists of all possible (uniquely named) imple- 
mentation components that may be expressed by finite length strings in some fixed 
language /,. A concrete instance has no parameters and represents a program unit 
with completely defined operations ready to integrate into a software system. For 
the purpose of describing elements of CI. L may be viewed as a programming lan- 
guage (augmented by a specification language) and element of CI as implementation 
modules. As noted above, every elements of CI must be vclI-formcd and have a 
well-defined meaning. Thus, each element of CI must be a legal implementation 
module in accordance with the syntax of L. While a member of CI is a finite string 
of symbols from the finite alphabet of L. there is no upper bound on its size.  Thus 
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any useful L supports description of a countably infinite number of concrete instances 
— the size of CI is N0- A component providing a complete data representation and 
fully implemented operations for manipulating a list of characters is an example of a 
concrete instance. 

The set CT of concrete templates consists of all possible (uniquely named) param- 
eterized implementation components that may be expressed as finite length strings 
in L. The only difference between the content of elements of CT and CI is that an 
element of CT refers to a single abstract instance that serves as a formal parameter 
for which the actual parameter is a concrete instance3. Whereas an element of CI 
models a ready-to-use component that may be incorporated directly into a larger 
system, an element of CT models a component that must be instantiated in order to 
generate a concrete instance. An implementation of a list parameterized by the type 
of elements contained within the list is an example of a concrete template. 

The motivation for modeling concrete instances is clear — they represent the 
modules that make up a fully integrated component-based software system. Concrete 
templates also play an essential role in the model. They provide direct support for 
substitutability and thus are useful for more than just the generalization of families 
of related implementations. We discuss the primary role of concrete templates in 
Section 2.4.2. 

2.2.2    Specification Components 

In previous sections, we have referred to a behavioral interface specification as 
if it were different-in-kind from a software component. With physical systems, in- 
terface specifications and the physical components that conform to them do tend 
to be markedly different. For example, we are unlikely to confuse light bulbs and 
light bulb sockets with the specification document describing their standard inter- 
face. The situation is different, however, with software. Software components are 
symbolic descriptions of possible computer behavior. A software interface specifica- 
tion that describes what computer behavior is required and a software component 
that describes how some computer behavior is achieved are quite similar in nature. 
Both play important roles as parts (components) of a complete description of how a 
component-based software system may be constructed or has been constructed. To 
reflect the important role of software interface specifications, we include in our def- 
inition of "software component" both implementation components, members of CI 
and CT, and specification-only components, members of AI and AT. 

The set AI of abstract instances consists of all possible (uniquely named) spec- 
ification components that may be expressed by finite length strings in some fixed 

3We limit a template to a single parameter for modeling convenience. However, multiple para- 
metric dependencies may be modeled by a single formal parameter where the actual parameter is a 
single concrete instance that satisfies all of the requirements expressed by what would otherwise be 
several parameters. 
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language /.. An at)stract instance has no parameters and represents a set of ready- 
to-nsc behavioral interface specifications. For the purposes of describing elements 
of AI. I. may be viewed as a specification language augmented by a programming 
language in which the syntactic (structural) interface of an implementation module 
may be defined independently from its implementation. Each element of .4/ is a 
well-formed specification in accordance with the syntax of I. For any useful /.. the 

si/e of AI is K(l. An element of .1/ specifics a behavioral interface that describes 
the externally visible structure (signature) and associated operation behaviors that 
conforming concrete instances must provide. Thus, the specification elements of L 
should be sufficiently expressive to describe any behaviors of interest that may be con- 
structed with the implementation elements of/,. /, might need to be very powerful in 
order to specify, perhaps non-deterministicallv. the functional and temporal aspects 
of behaviors exhibited by complex implementations. In general. /, may need to relv 

on higher-order logics and a wide variety of mathematical and application domain- 
specific theories. Software specification languages such as Z. YDM. the Larch Shared 

Language, and the specification sub-language of RESOLVE are all possible candi- 
dates for the specification notation of/,. A component specifying the signatures and 
behavior of operations manipulating a list of characters (without describing the list 
implementation) is an example of an abstract instance. 

The set .17 of abstract templates consists of all possible (uniquely named) pa- 
rameterized specification components that may be expressed as finite length strings 
in /,. I lie relationship between elements of .1/ and elements of .47 is analogous to 
the relationship between elements off'/ and CT. The only difference between the 
content of elements of .47' and AI is that an clement of .47" refers to one abstract in- 
stance that serves as a formal parameter for which the actual parameter is a concrete 
instance. An element of .47' models a generic behavioral interface that must be in- 
stantiated in order to generate an abstract instance. A specification of the signatures 
and behavior of operations manipulating a list that is parameterized by the type of 
elements contained in the list is an example of an abstract template. 

As a specification independent from particular implementations, an abstract in- 
stance may serve two closely relaled but distinct roles. First, an abstract instance 
may be used to describe the behavior of one or more concrete instances which con- 
form to it. This role is depicted in the bottom half of Figure 2.2. Second, an abstract 
instance may be used to describe the behavioral requirements of a component at an 
abstract, implementation-independent level. This role is depicted in the top half of 
Figure 2.2. An abstract template is primarily a convenient way of generalizing a set 
of closely related abstract instances. 

Maintaining specification components alongside implementation components al- 
lows them to be used for structural (syntactic) conformance checking at component 
compilation and integration time.   Specification components may also be used for 
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behavioral (semantic) conformance checking during the process of certifying that a 
particular implementation conforms to a specification, when such a claim is made. 

2.2.3    Math Theory Modules 

The role of mathematical theory modules is to encode mathematical objects for 
use in modeling program behavior. We rely on set theory to provide a foundation 
upon which arbitrarily complex state spaces and transitions may be built to math- 
ematically model program behavior. Enderton describes how mathematical objects 
such as numbers (natural, integer, rational, and real numbers), tuples, functions, 
and relations may be represented with sets [End77]. For example, logicians typically 
represent the set of natural numbers {0,1,2,...} by the set {0, {0}, {0, {0}},.. •} in 
which the empty set represents zero and each of the other natural numbers is repre- 
sented by the set of natural numbers that precede it. Using constructive definitions 
such as this, it is possible to define the domains of mathematical theories (such as 
number theory for naturals) and then prove the axioms of those theories using only 
the axioms of set theory4. 

Mathematical theories and their associated domains, operators (functions and re- 
lations over the domain), and defining axioms are encoded in math modules (elements 
of M) for use by components and other math modules. We adopt the terminology 
defined in [HLOW94] and call the domain associated with a theory a math type (oth- 
ers use the term sort) and functions and predicates associated with a theory math 
operations. The motivation for this terminology is to draw an analogy between math 
types and operations and program types and operations. The meaning encoded by 
a math module is derived from an interpretation of the math type and math oper- 
ations that it defines. An interpretation function X maps the math type and math 
operations defined by each math module to representative sets. The domain of X is 
the set of math modules M. The range of X is a collection of sets V, large enough to 
model any program behaviors of interest5. 

For example, X might map the natural number math type defined in a math 
module for number theory to the set {0, {0}, {0, {0}},. • •}, the constant math op- 
eration 0 (zero) to 0, a math operation for successor to the set of ordered pairs 
{(0,1), (1,2),...} (with pairs encoded as sets), and so forth. The interpretation of 
this theory, as conveyed by axioms stated in the math module, is that elements of 
the math type represent (the mathematical concept of) natural numbers. Of course 
(infinitely) many other sets in V could be used to represent natural numbers. In 
defining the role of X we just require that it map each mathematical object defined 

4Zermelo-Fraenkel set theory with the Axiom of Choice (ZFC) provides widely-accepted axioms 
suitable for defining much of mathematics in terms of set theory [End77, p. 253]. 

5 A collection V suitably large for any modeling need is the proper class of all sets [End77, p. 210] 
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by a ninth module to sonic sot in 1" for which the axioms stated in the math modulo 
can be justified, ultimately in terms of the axioms of set theory. 

I sin a; the model-based specification approach, each protjram type from which pro- 
gram objects (variables) may be declared is modeled by a math type. The semantics of 
/. fixes the math models for any program typos built in to L. Common built-in types 
for programming languages include Boolean, integer, character, and floating point 
scalar types as well as type constructors for static data structures such as records 
and arrays and for dynamic pointer-based structures. The semantics of A also must 
define the meaning of built-in control structures such as statement sequences, condi- 
tional statements, loops, and procedure and function calls which appear in concrete 
instances and concrete templates. When a component (a member of C) defines a 
(non-built-in) program type, the program type is associated with a math typo (de- 
fined in a math module) that servos as the behavioral model for the program type. 
The math operations defined by the axioms and theorems of a theory associated with 
the math type are used to describe the behavior of program operations on objects of 
the program tvpe. 

2.2.4    Component Behavior 

I p to this point we have used phrases such as "computer behavior", "behaviors 
implemented by a component", and "behaviors specified by a component" without 
attempting to define the term "behavior". To model conformance to behavioral inter- 
face specifications, we must include some concept of computer behavior in the model. 
In order to make the model as language-independent as possible, however, the model 
cannot bo too specific about the exact form of modeled behaviors. 

I he standard approach to modeling computer behavior is to define a collection 
of states and transitions between those states. A state re-presents the status between 
transitions of the physical system (a computer or computer-controlled system) that 
carries out operations described by software. The transitions from state to state 
represent the behavior of the physical system and thus the behavior described by 
the software. The semantics of a programming language maps well-formed syntactic 
elements of the language to sots of transitions in the state space. The definition of 
the states, which may be expressed in terms of an abstract machine rather than a 
specific computer, determines the extent to which different physical behaviors can be 
distinguished by the semantics of a programming language. 

I he approach wo use to characterize the semantics of software components is to 
assume a traditional (operational or denotation«]) semantics for concrete instances 
and then define the semantics of elements of AI. CT. and .47 in terms of the semantics 
of elements of CI. Since1 a concrete instance has no unresolved external dependencies, 
the semantics of a concrete instance that implements a single operation may be treated 
like the semantics of a single complete program. The semantics of a concrete instance 
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that implements more than one operation may be treated as potentially interacting 
programs that may manipulate a common state. 

We use the semantic function <S to describe the mapping of software components 
(all members of C) to a set-based representation in V. Since the meaning of each 
program type used within components is determined by its associated mathematical 
model, S is determined in large part by the mappings of X. For example, say com- 
ponent c £ CI refers to program type tp which is modeled by math type TM. Then 
within the representation of 5(c), objects of program type t will be represented by 
the set given by X(TM). Since all elements of C must be well-formed components, 
S is a total function with domain C. However, the range of S is likely to be only a 
small portion of V which corresponds to sets that model program behavior. 

We model the behavior of a concrete instance by a single element of the collection 
B of abstract behaviors which is a subset of V. The semantic function S maps 
each element of CI to an element of B. For c £ CI, S(c) represents the meaning 
(semantics) of c in the model of behavior used to define B. The set S(c) represents an 
aggregation of lower-level semantic functions yielding the meaning of each operation 
defined in c, which may be defined in terms of the operations in other concrete 
instances upon which c depends, all of which are ultimately defined in terms of X and 
the semantics of elements of L. 

The nature of an element of B depends upon the type of semantics used to define 
L. Consider a concrete instance c £ CI which implements and provides for use to 
other components three operations: Oi, o2, and o3. Then the essence of S(c) £ B is 
the set {S0(oi),S0(o2),S0(o3)} where S0 defines the semantics of program operations. 
S(c) might also incorporate specification information to aid in formal verification. If 
S defines the meaning of strings of L in terms of a denotational semantics, then <S0(oi) 
would correspond to a partial function from states to states. The domain of the func- 
tion would represent all states in which the operation could be applied meaningfully. 
Application of the function would model the change in state resulting from execution 
of 0\. If S defines the meanings of strings of L in terms of an operational semantics, 
then S0{oi) would correspond to a set of sequences of states. Each sequence would 
correspond to all intermediate states along one possible "execution path" through o^. 
The space of ACTI concrete instances [Edw95, p. 66-77] is one way in which B might 
be defined using a denotational semantics approach. 

To keep the model as simple as possible, we define the semantics of abstract 
instances extensionally. We define the meaning of an abstract instance as the set 
of meanings of all concrete instances which conform to the behavior specified by 
the abstract instance. Using this definition, the range of the semantic function S 
with domain restricted to AI is the power set of B, VB — the set of all subsets of 
B. A specification a £ AI may be thought of as stating a behavioral requirement. 
Each behavior in B either does or does not satisfy that requirement. S maps each 
specification in AI to the set of all behaviors in B that satisfy the specified behavioral 
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figure 2.4:  Iiii]>lf»iiioiit at ions. Specifications, and Behaviors 

requirement. It is possible for a specification a e AI to state a requirement that no 
behavior- in B satisfy. In this case. S{n) = 0. Figure 2.4 depicts all of the spaces 
in the model except for template components and their associated semantics. Tin- 
semantics of template components will he discussed in Section 2.4.2. 

Defining the semantics of a language /, to the decree necessary to formally justifv 
that an element off'/ indeed conforms to an element of Al is a significant undertak- 
inu. Furthermore, once 5 and B have been defined for a specific language L. the task 
of verifying whether some r G CI is correct with respect to some n e AI may he ex- 

tremely difficult and theoretically impossible in some cases. Nevertheless, it is possible 
to formally define the semantics of programming languages supporting component- 
based software engineering and to formalize the rules for justifying the correctness of 
implementations with respect to behavioral specifications [KroSS. HeyOÖ;. 
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2.3    Conformance Relationships 

As explained in Section 2.1, in order to support component-level maintenance, 
we need to address the issue of an implementation's conformance to a behavioral 
interface specification. We would like to be able to conclude that if an implementation 
"conforms to" a specification, then that implementation may be used wherever there 
is a requirement for the behavior described by the specification. In this section we 
define three component conformance relations. Section 2.3.1 defines the fundamental 
conformance relation between concrete instances and abstract instances. Section 2.3.2 
defines a conformance relation between two abstract instances. 

2.3.1    Implementation-To-Specification Conformance 

Informally stated, if c G CI conforms to a G AI, then c must fully and correctly 
implement all behavior described by a. However, c may also implement behavior 
not specified by a as long as all requirements of a are satisfied by c. While this 
conformance relation is stated in terms of c and a (strings of symbols), it is the 
structure and behavior implemented by c that must conform to the structure and 
behavior specified by a. Using the semantic function S and the collection of modeled 
behaviors B described in Section 2.2.4, we define the conformance relation imps:C7x 
AI, as follows: 

imps(c, a) = S(c) G S(a) (2.2) 

The predicate imps(c, a) may be read as "component c implements component 
a". Figure 2.5 depicts this relationship with a solid arrow from implementation c to 
specification a. The behavior implemented by c, S(c), is represented by the point 
b G B. The set of behaviors specified by a, S(a), is depicted by the single point in 
VB and by the dashed gray oval in B. The double-ended gray arrow between B and 
VB points to both representations of this set. Since, in this example, c implements 
a. b is a member of the set S(a). 

imps is a many-to-many relation. Just as there are many different ways to imple- 
ment a given specification, there may be many different ways to abstractly describe 
behavior provided by a single implementation. Implementations conforming to the 
same specification may vary in ways that do not affect the behavior implemented 
(e.g., the number of embedded comments, which might affect maintainability but not 
the run-time behavior). Since a conforming concrete instance may describe behavior 
not required by an abstract instance, implementations conforming to a common spec- 
ification also may differ with respect to their implementations of these "additional" 
behaviors. Conforming concrete instances also may implement non-deterministically 
specified behaviors in ways that produce significantly different behaviors and yet still 
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Finnic 2..">: The imps Relation 

conform to the abstract instance. The possibilities fire analogous for multiple specifi- 

cations that accurately characterize a single implementation. Different specifications 

to which a single implementation conforms may he trivially different syntactic vari- 

ants that specify the same behavior. Different specifications may specify disjoint 

sub-behaviors of the total behavior implemented by a single conforming implementa- 

tion, finally, different specifications may describe the same implemented behavior in 
substantively different ways. 

If impsfee/) holds, then there must be some legitimate way of explaining finir c 

implements n. Such an "explanation" must address how the language-specific struc- 

tural (syntactic) requirements of r/ may be satisfied by the structure of c and how the 

behavioral (semantic) requirements of a may be satisfied by the operations defined by 

r. While providing an explanation of how <■ conforms to a is essential for justifying 

a claim that imps(r.fi). such a claim is cither valid or invalid independent of anv 
particular explanation. 

Finally, note that imps(ro) does not imply that a <= ctx(c). That is. an imple- 

mentation need not refer to a specification that it implements. From a design and 

implementation perspective, there are both advantages and disadvantages to having 

an implementation coupled to a specification to which it conforms. We will discuss 
these issues in Section   l..'i. 
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Figure 2.6: Specification Conformance And Subsets 

2.3.2    Specification Extension 

We now consider a conformance relationship between two specifications in AI. 
As discussed above, for imps(c, a) to hold, all behavior described by a must be im- 
plemented by c, but c may also implement additional behavior left unspecified by 
a. Thus c may implement a and also implement other specifications that describe 
more or fewer requirements on implementations than a. Consider a specification, 
say ö-i, that places certain structural and behavioral requirements on all conforming 
implementations. Now assume another specification, say a2, specifies the same be- 
havior as ax. plus some additional behavior not specified by a\. In this situation any 
concrete instance that implements a2 should also implement ai, but there may be 
implementations of a\ that do not implement a2. Figure 2.6 depicts this situation. 

On the left side of Figure 2.6, the solid arrows from elements of CI to elements of 
AI represent pairs in the imps relationship. That is, C\ implements a\ and both c\ 
and c2 implement a2, but C\ does not implement a2. The property that all concrete 
instances implementing a2 also implement a\ (in this example) is depicted on the right- 
side of Figure 2.6. The dashed gray ovals inside of B represent subsets of B and the 
double-ended gray arrows between B and V(B) point to two different representations 
of the same set of behaviors. The larger oval represents S(ai), the set of all behaviors 
that satisfy the behavioral requirement specified by a\. The smaller oval represents 
<S(a2), the set of all behaviors that satisfy the behavioral requirement specified by a2. 
In the figure, S(a2) is depicted as a subset of <S(ai). Therefore, all concrete instances 
that implement the behavior specified by a2 (such as c2) also implement the behavior 
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Figure 2.7: The exts Relati on 

specified by r;,.   More simply stated, all concrete instances that implement a., also 
implement r;,. 

In the situation described above, we may say that specification a-, -conforms to" 

s])eeification r;,. 'I his notion of conformance is similar to that of behavioral suhtupinij 

LWD! . We define this relation between two specifications, exts:.-!/ x AI. as follows: 

exts(r/.j.f/|) EH S(a,) C 5(r/i (2.3) 

I lie predicate extsfr/j. a]) may be road as '■specification a-2 extends specification 

iii . figure 2.7 summarizes all of the information explicitly shown in Figure 2.(5. 

I lie dashed arrow from a-, to rq depicts the exts relationship between these two 
specifications. 

If extsfr/j.c/,) holds, then the behavioral requirements specified by a, may be 

viewed as an extension of the behavioral requirements specified by rq. This does tint 

mean that the (symbolic) content of a2 is an extension of the content of rq. although 

that niifjlit be the case. .lust as c need not refer to a for imps(r.fi) to hold, a-, need 

not refer to a-, in order for exts(r/L,. rq) to hold. Nevertheless, in order to justify that 

extsU/j.rq) holds, there must be some way of explaining how the behavior specified 

by rq, covers all of the behavior specified by rq. 

I lie exts relation is reflexive (any specification extends itself) and transitive. It 

is not. however, antisymmetric (as is subset inclusion) since two different specifica- 

tion components may specify identical behavioral requirements and thus extend each 
other. 

A useful property that follows directly from the definitions of imps and exts is: 
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imps(e, o,2) A exts(a2, ax) -> imps(c, ai) (2.4) 

The imps relationship between c2 and ax shown explicitly in Figure 2.6 is not 
shown in Figure 2.7, but follows immediately from the above property. 

There are three basic ways in which the behavior of a specification component 
might be extended: specialization, generalization, and augmentation. If a2 strengthens 
the post-conditions of one or more of the operations specified by ax and exts(a2, ax), 
then a2 specializes ax. If a2 weakens the pre-conditions of one or more of the operations 
specified by ax and exts(a2, ax), then a2 generalizes ax. If a2 specifies operations not 
specified by ax and exts(a2, ax), then a2 augments ax. Any combination of these three 
forms of extension (including none of them) may apply to two specifications related 
by the exts relation. 

As a simple example of these three forms of extension, consider the behavioral 
interface specification for a bounded integer bag with two operations, Insert and 
Remove, and a maximum size of 10 integers6. A bag is like a set except that a bag 
may contain more than one occurrence of the same element. The pre-condition for 
Insert would require that the bag contain fewer than 10 integers. The post-condition 
of Insert would require that the bag contents after completion of the operation be 
the same as that beforehand, except that it should contain an additional integer of 
the value inserted. The pre-condition for Remove would require that the bag contain 
at least one integer. The post-condition of Remove would require that the contents 
of the bag after completion of the operation be the same as that before hand, except 
that it should contain one less integer of the value removed — some integer contained 
in the bag prior to execution of the Remove operation. This is a non-deterministic 
specification in that it does not specify which element of the bag is removed. 

One specialization of this bag specification would be a specification that requires 
integers to be removed in a particular order relative to their insertion order or value. 
For example, a bounded integer stack specification might specify behavior identical 
to that specified by the bag except that the value of the integer removed must be the 
same as the value of the integer most recently inserted. Thus the post-condition on 
the stack operation corresponding to Remove would place a compatible, but stronger 
requirement than that of the bag on all conforming implementations. A generalization 
of the bag specification would be one that requires the same behavior except that the 
bag may hold up to 20 integers. In this case, the pre-condition for the operation 
corresponding to Insert would place a compatible, but weaker requirement on all 
conforming implementations. Finally an augmentation of the bag specification might 
specify the same requirements except that it also requires an additional operation that 
returns the number of elements currently in the bag. In each of these three examples, 

6 The bag specification described here was selected for simplicity and should not be interpreted 
as a good interface design. 
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any implementation that satisfies the requirements oft lie extended sperifieatiou also 
satisfies the requirements of the original bag specification. 

As discussed in Section 2.1.1. a common reason for changing the behavior of a 
software system is to add new functionality. As we discuss in Section 3.5. the aug- 
mentation form of specification extension is particularly useful for modeling extensions 
to component functionality. 

2.4    Dependency Relationships 

I he three conformance relations defined in Section 2.3. imps. exts. and exti. are 
defined in terms of the semantic properties of components. These relations model 

useful behavioral relationships between components. The fixed dependency relation 

described in Section 2.-1.1 is defined in terms of the syntactic properties of components 
and is completely orthogonal to the conformance relations. This relationship models 

the usual notion of component coupling applied to both implementation and specifica- 
tion components. The deferred dependency relation described in Section 2.-1.2 models 
"behavioral dependencies" which directly support component-level maintenance and 
require the introduction of concrete templates. 

2.4.1     Fixed Dependencies 

In Section 2.2 we noted that a unit (a component or math module) may be defined 
directly or indirectly in terms of a finite number of other components. Furthermore, 
our definition of a "component" requires that all direct dependencies be part of a 
component's context. Using tliectx function (Equation 2.1) we now define the general 
coupling relation over all components. The relation uses:f x C. is defined recursivelv 
a-~ follows: 

uses(n. <■■._,)    =    r, = (■■, V 

c, <Ecxt(r,)V (2.5) 

3c G cxt(c|) | uses(r. r>) 

I he predicate usesfr,. <•■._,) may be read as ••component r, uses component r-_>". In 
the first disjunct of the definition. cx and <■■> denote the same component (not two 
different components with the same content). In the second case, c, depends directlv 
on <■_,. In the recursive» case (which is vot mutually exclusive with either of the first 
two cases) r, depends directly on some component that depends either directly or 
indirectly on (or is) <■>. 

I he uses relation is reflexive and transitive. It is reflexive to model the possibilitv 
of features defined within a component being defined in terms of other features defined 
within the same component. A component may not bo a member of its own context 
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Figure 2.8: Concrete Instances Forming A Component-Based System 

since ctx is used to express a component's external dependencies. However, if ctx 
were a reflexive relation, then uses simply would be the transitive closure of ctx. 
Note that two components may depend mutually upon each other (e.g., uses(ci,c2) 
and uses(c2,ci)) may both hold) as long as components cx and c2 are well-formed 
according to the rules of L. 

If c\ uses c2, then component cx in some way depends upon component c2. If c\ 
and c2 are both concrete instances, then operations implemented in c\ might invoke, 
either directly or indirectly, operations implemented in c2. If c2 is a specification, 
then Ci may depend on all or part of c2 to explain behavior that it uses, extends, or 
implements (if c\ is an-implementation). To fully understand and justify properties 
about the behavior described (implemented or specified) by component c, a software 
engineer may need to understand the behavior described by all other components 
(both implementations and specifications) used by c. 

Once a component-based system has been fully integrated, the behavior of the 
system depends only on concrete instances. We can characterize the inter-component 
dependencies in a fully integrated system solely in terms of the uses relation restricted 
to concrete instances. Figure 2.8 shows two views of a simple component-based system 
composed of five concrete instances: Al, Bl, Cl, Dl, and El, all members of CI. On the 
left side of Figure 2.8, the arrows between components represent direct dependencies. 
Thus we may conclude that that ctx(Al) = {Bl, Cl}, ctx(Bl) = {Dl, El}, and ctx(Cl) 
= {El}. Component Al corresponds to a "main program" and components Dl and 
El are components implemented entirely in terms of built-in features of L. The right 
side of Figure 2.8 shows the sub-graph of the uses relation induced by just these five 
concrete instances. An arrow from component C\ to component c2 indicates that the 
predicate uses(ci,c2) holds. 
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If uses' c,.(-._,) holds, then component <•■, is "hard wired" to component c\. There is 

a //.oJ dependency of r, on r, that cannot he changed." Any system using r, must also 

use c, us a result of this dependency. If a maintainer wishes to replace (■■> with another 

compatible component, then r, must also he replaced since it depends specifically on 

c,. As a result, components with fixed dependencies on other implementations, like 

Al. Bl. and Cl in Figure 2.8. do not support component-level maintenance. In the 

following section we address this prohlem. 

2.4.2    Deferred Dependencies 

As we discussed in Section 2.1.3. in order to foster substitutabilitv. components 

must he designed and implemented to conform to behavioral interfaces and also to 

nqum use of any components that conform to those interfaces. Consider again the 

component relationships depicted in Figure 2.2. For now. assume that the element 

type of list, stack, and queue has been fixed, say to type Integer. (We will consider 

the more general case without this assumption later in this section.) If we model the 

(Integer) list implementations on the bottom of the figure as components in CI and 

the flnteger) list interface in the center as a specification in .-1/. then the ••conforms 

to" relationship shown may be modeled by the imps relation defined in Equation 2.2. 

1 lie issue we address in this section is how to model the ••requires an implementation 
of   relationships shown on the top of Figure 2.2. 

It would be convenient to use elements off7 as the models for all implementation 

components. However, implementations with dependencies expressed in terms of 

a behavioral interface specification arc different in kind from implementations that 

have fixed dependencies. To understand the difference, consider the five components 

shown in Figure 2.0. Assume that the two list implementations at the bottom of 

the figure. IL1 and IL2. are implementations in CI with no external dependencies. 

I hat is. they only use operations and types provided directly by L (including, in 

this example, type Integer). Assume that the behavioral interface depicted in the 

center of the figure. IL. is a specification in AI and that both list implementations 

conform to this specification as indicated by the arrows labeled imps. The stack 

implementation depicted in the upper left corner of the figure. IS1. directly uses list 

implementation IL1 as shown. We may model IS1 as a component in CI with a 

corresponding behavior S(IS1) defined in terms of S(IL1). 

1 he component labeled IST1 in the upper right corner of Figure 2.0 is an Integer 

stack implementation that may use ani/ list implementation that conforms to IL. We 

say that IST1 has a deferred dependiiiei/ on an implementation of IL or that it 

■■needs" an implementation of IL. (We define the needs relation below.) Assume 

that the content of IST1 is identical to that of IS1 except that when- IS1 names list 

'SIIKT the set of nil concrete instances CI is fixed in our model,  ••making a change to r," is 
equivalent to shifting attention to another component in CI that may or may not depend on r>. 
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Figure 2.9: Fixed and Deferred Dependencies 

operations specifically provided by ILl, IST1 refers to list operations as specified in 
IL. (We will examine the details of how a component with deferred dependencies may 
be encoded in specific programming languages in Chapters 4 and 5.) The problem 
with modeling IST1 as a concrete instance is that this component does not describe 
a single component behavior in B. IST1 characterizes a set with as many different 
stack behaviors as there are list behaviors in <S(IL). If we select ILl to satisfy ISTl's 
need for an implementation of IL, then we expect the resulting behavior to be the 
same as that described by IS1. If we select IL2 instead, then the resulting behavior 
may be different. 

We model implementation components with deferred dependencies as members of 
the set CT of concrete templates introduced in Section 2.2.1. A component with a 
deferred dependency may be viewed as a template for generating concrete instances. 
We model the meaning of a concrete template as a function from one behavior in B 
to another behavior in B. The semantic function S (restricted to the domain CT) 
maps each concrete template t E CT to a function in the set of all functions from B 
to B. The domain of the function S(t) is the subset of B defined by the specification 
a 6 AI used to express the deferred dependency of t. The range of S(t) is the subset 
of B that includes the behaviors corresponding to all concrete instances that may be 
generated by instantiating t with any concrete instance that implements a. 

The relation needs : CT x AI models a deferred dependency between a concrete 
template and an abstract instance. The relation is defined as follows: 

33 



needs (/.<■/) = domain(5(/)) = S(a) (2.G) 

I lie predicate needs (/.<■/) may he read as "concrete template / needs an imple- 

mentation (any implementation) of abstract instance a". For any c G CI for which 

imps'c.a) holds, the result of instantiating / with c is a concrete instance r' for which 

uses'r'.r) holds. That is. the concrete instance generated by the instantiation uses 

the concrete instance that was chosen to instantiate the concrete template. 

figure 2.1(1 shows how the components and relationships in Figure 2.0 (except for 

IL2i are modeled. IST1. the stack implementation that needs any concrete instance 

that implements IL. is modeled as a concrete template in CT. ISTl's deferred depen- 

dency on an implementation of IL is indicated by the arrow labeled needs from IST1 

in CT to IL in .1/. The semantic function 5 maps IST1 to the clement S(IST1) in the 

set of functions from B to B. Since IST1 needs an implementation of IL. the domain 

of the function 5(IST1) is 5(IL) which is depicted by the dashed oval within B. Since 

the list implementation IL1 implements the list specification IL. IL1 may be used to 

fulfill ISTl's requirement. Figure 2.10 conveys this on the left side with the needs 

and imps relationships and on the right side by showing the behavior S(IL1) in the 

subset Sill) of B. When the function 5(IST1) is applied to the behavior S(IL1) the 

result is the behavior S(IS1) as depicted by the dashed line from S(IL1) to 5(IS1). 

Thus the behavior implemented by the concrete template IST1 instantiated with the 

concrete instance- IL1 is the same as the behavior implemented by IS1 with its fixed 
dependency on ILL 

I he final aspect of the model is the meaning of abstract templates. We model the 

meaning of an abstract template as a function from the- set B of behaviors to the set 

V\B\. the power set of behaviors. For an abstract template u G .47" and a concrete 

instance <■ G CI. there is an abstract instance a G .4/ such that S(ii)(S(c)) - S{a). 

Thus the meaning of an abstract template may be viewed as a function that, when 

applied to the meaning of an implementation, produces the meaning of a specification. 

This is a somewhat different model of abstract templates than that defined by AC'TF. 

Nevertheless, this view of abstract templates is sufficient for our needs as presented 
in Chapter 3. 

figure1 2.11 shows all of the spaces defined within the model including the set 

of abstract templates .17' and the set of mathematical theory modules M. In this 

figure, the abstract template LT is a specification of a list just like IL. except that 

it is parameterized by the type of item contained in the list. That is. LT specifies 

a list template rather than an integer list. The components I and II represent an 

intencr type specification and implementation, respectively. (Although these are not 

depicted in Figure 2.11. IS1 uses II. IL1 uses II. IST1 uses II. and IL uses II.) In 

this situation, the behavior specified by instantiating LT with II is the same as that 

"In the AC"I I mode], mi abstract  template is a function from an abstract instance to another 
ah-tra'-t instance. [KdwD.1. f.l.S] 



needs 

Figure 2.10: Concrete Templates And The Needs Relation 
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imps impsff. a) = S(r) e S(a) 
exts exts(r/j. r/|) = S{n-,) C S((ii) 
uses uses(c,. (■■_,) ("i = eW 

r2 G CXt(e,)V 
3e £ cxt(r'i) | uses(r. <"•_.) 

needs needs(/. a) = domain(5(/)) = <5>(e) 

Table 2.1: Summary of Modeled Component Relati ons 

specified by IL. This instantiation of LT is depicted in Figure 2.11 as the function 

application arrow traveling from 5(11) in B through the function «S(LT) to <5(IL) in 
V\lh. 

I iuure 2.11 also shows that the integer specification, abstract template I. depends 
on the mathematical integer theory description ITHRY. The interpretation of ITHRY. 
Zi ITHRY). is shown simply as a point in V. All of the components (strings in I) shown 
in the fiüiire rely either directly or indirectly on ITHRY (these uses relationships are 
not shown tn reduce clutter). Thus, each component's meaning, shown as a point or 
function (a set) in Y. is constructed, in part, from the set J(ITHRY). 

2.5     Chapter Summary 

In this chapter we have developed a set theoretic model ofbelmvioral relation- 
ship- between software« components. The purpose of this model is to describe the 
behavioral relationships between software components needed to support component- 
level maintenance«. Section 2.1 motivates the need for component-level maintenance 
and relationships that express behavioral conformance and behavioral requirements. 
Section 2.2 describes our component model, which includes abstract and concrete 
templates (parameterized specifications and implementations), abstract and concrete1 

instances (non-parameterized specifications and implementations), and mathematical 
theory modules. 

1 lie model defines the meaning of each concrete instance as an («lenient in the set 
B of -behaviors". The meaning of an abstract instance is defined as a set of behaviors, 
a member of the power set of B. TB. The meaning of a concrete instance is defined as 
a function from B to B. The meaning of an abstract template is defined as a function 
from B to TB. 

In Section 2.3. we defined imps, a conformance relationship between concrete« 
mid abstract instance's, and exts. a conformance« relationship between two abstract 

3f> 
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Figure 2.11: The Big Picture 
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installers.  In Section 2. 1 we defined the fixed dependency relation uses and the de- 
ferred dependency relation needs. Table 2.1 lists these relations and their definitions. 



CHAPTER 3 

A USEFUL SET OF SOFTWARE COMPONENT 
RELATIONSHIPS 

In this chapter we define a useful set of software component relationships based 
on the model of components and relations developed in Chapter 2. We do not claim 
that these are the only useful relationships between components nor do we claim that 
they are ideally suited to all approaches to software development. However, as we will 
explain, the relationships presented in this chapter are well-suited for building and 
maintaining component-based software systems. In this chapter we also introduce the 
graphical notation of component coupling diagrams used to depict each relationship 
described. 

This chapter presents a sequence of simple example components to demonstrate 
the relationships described. Section 3.1 introduces a specification and implementation 
notation used to encode example components. Section 3.2 describes the dependency 
relationship uses, corresponds directly to the uses relation described in Section 2.4.1. 
Section 3.3 describes the behavioral relationship implements which is based on the 
imps relation described in Section 2.3.1. Section 3.4 describes the deferred depen- 
dency relationship needs which is based on the needs relation described in Sec- 
tion 2.4.2. Section 3.5 describes the behavioral relationship extends which is based 
on the exts relation described in Section 2.3.2. In Section 3.7 we provide a summary 
of the relationships defined in this chapter. 

3.1     Component Notation 

The component relationships described in this chapter are language-independent 
in the sense that they are not tied to specific language mechanisms. The relationships 
reflect design-level information that may be encoded in various ways with various 
implementation and specification languages. Nevertheless, some languages provide 
much better support than others for encoding these relationships. Chapter 4 discusses 
language support for encoding these relationships. 
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In tins chapter we present examples of components encoded in a custom notation 

wirb specification elements similar to those of the RESOLVE language and imple- 

mentation elements similar In those of Ada. The notation has been simplified (with 

respect to RESOLVE and Ada) in order to shorten example code and minimize the 

need to address details not directly relevant to the issues discussed in this chapter. 

Some of the simplifications involve namespace control (use of unqualified versus quali- 

fied identifier names), operation parameter mode specification, features built into the 

language, implementation-level encapsulation, object initialization and finalization. 

and minor syntactic details (such as the use of semicolons). The components encoded 

in RESOLVE./AdaO") shown and discussed in Chapter 5 address these and other is- 

sues with specific solutions based on the capabilities and limitations of RESOIA'E 
and Ada. 

As in Chapter 2. we use the term -component" to refer to a software module that 

describes either an implementation of behavior or a specification of behavior. Fur- 

thermore the description of behavior may be parameterized (a template component) 

or not (an instance component). We continue to use the terms "concrete instance", 

"concrete template", "abstract instance", and "abstract template" to refer to the four 

kinds of components which result from this categorization. In the examples, we will 

prefix each component name with the string "CI_". "CT_". "AI_". or "AT_" to indicate 

its classification as one of these four kinds of components. Note that this is a naming 
convention only and not part of the notation syntax. 

In the notation used in this chapter, both specification components (abstract in- 

stances and abstract templates) and implementation components (concrete instances 

and concrete templates) are encoded with the same basic format. Each compo- 

nent has: a header, an optional context section, an optional auxiliary section, 

an interface section, and a terminal end delimiter. The header begins with either 

specification or implementation followed by the component name which option- 

ally may be followed by extends clauses in specifications and implements clauses 

in implementations. The context section lists all direct fixed dependencies encoded 

with uses clauses followed by all deferred dependencies encoded with needs clauses. 

The deferred dependencies constitute the component parameter section. If a com- 

ponent has no external dependencies it is constructed solely in terms of elements 

built into the language       then its empty context section may be omitted. 

I lie auxiliary section in a specification component may include definitions that 

describe the behavior specified in the interface section. In addition to specification- 

only definitions, the auxiliary section of an implementation component also mav 

include I,,ml definitions of program types, operations, and variables used to describe 

the behavior implemented in the interface section. That is. any program tvpes. 

operations, and variables defined in the auxiliary section may be referenced onlv 

within the remainder ofthat section and in the following interface section. The 

auxiliary section may be omitted if it is empty.   The interface section provides 



specification AI_Flipflop 

interface 

type Flipflop is modeled by BOOLEAN 
exemplar  ff 
initially ff = FALSE 

procedure Toggle (f : Flipflop) 
ensures f = NOT #f 

function Test (f : Flipflop) : Boolean 
ensures  Test = f 

end AI_Flipflop 

Figure 3.1: Abstract Instance AI_Flipf lop 

a specification or implementation of program behavior in terms of program types 
and operations. Program type, operation, and variable definitions in the interface 
section may be made available for use by other components. 

Figure 3.1 shows a very simple abstract instance named AI_Flipf lop. This ab- 
stract component provides a model-based specification [Win90] for a two-state device, 
a flip-flop, for which the current state may be toggled and tested (queried). The 
context and auxiliary sections are not shown since this component only uses built- 
in types and operations. The interface section includes definitions of the abstract 
data type Flipflop and two associated operations Toggle and Test. 

The examples in this chapter assume that all components have visibility over the 
components CI_Boolean_l and CI_Integer_l that define the scalar program types 
Boolean and Integer. These types and their associated operations (e.g., or for 
Boolean and + for Integer) may be used without any reference in the context section 
to the components in which they are defined. Thus Boolean and Integer may 
be considered as built-in program types of the language. As in most programming 
languages, program types are used to ensure that program variables are used in legal 
contexts. 

The program types Boolean and Integer are modeled by the math types BOOLEAN 
and INTEGER, respectively. The math types BOOLEAN and INTEGER are specified in the 
math theory modules MI_Boolean_Theory and MI_Integer_Theory. These two math 
theory modules are also built-in theories of the language in the sense that the math 
types and math operations that they define (e.g, OR for BOOLEAN and + for INTEGER) 
may be referenced without mentioning their defining math theory modules in the 
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context section. Math theory modules provide formal specification of mathematical 
theories that may lie used to mathematically mode] program behavior. They serve 
the same role as math modules in HESOLYE [WOZ0.1] and as traits in the Larch 
Shared Language [GHWSÖ]. Note that we do not consider math modules to be 
software "components" since they do not describe program behavior and their use 
in no way effects the operational behavior of component-based systems. To help 
distinguish between program and math types and operations, we use all upper case 
identifiers for math types and operations and mixed case1 identifiers for program tvpes 
and operations. Common operator symbols such as "+" and "=" are exceptions and 
may be distinguished by context. 

In the interface section of AI^Flipflop (Figure 3.1) program type Flipflop is 
declared by defining its mathematical model to be the math type BOOLEAN. Thus, the 
al>.<fnict state space used to mode] a flip-flop is the set {FALSE. TRUE}. The exemplar 

clause states that the identifier ff will represent a prototypical object for specifying 
properties ,,f ;dl objects (values of variables) of type Flipflop. The initially clause 
states that the initial abstract state of a Flipflop object is FALSE. 

I he operation Toggle is specified using a relational procedure signature that 
takes i) Flipflop object as its single argument. Execution of a procedure may change 
the abstract values of all of the operation's arguments. The pre-condition of Toggle, 
expressed by a requires clause, is not shown since it places no restrictions on the 
states from which Toggle may be meaningfully invoked (a flip-flop may be toggled 
from either state). The post-condition of Toggle, expressed by the ensures clause, 
specifies that after execution of Toggle the abstract state corresponding to the con- 
crete state of the argument is the negation of the abstract state prior to execution. 
In requires and ensures clauses, formal parameter identifiers (f in this example) 
denote objects of the math type used to model the parameter's program type. In 
an ensures clause, an argument prefixed by ••#"' denotes the value- of the argument 
/"'""' to execution of the operation being specified. Thus Toggle changes the flip-flop 
from one state to the other state. 

1 he operation Test is specified using a function signature that takes a Flipflop 
object as its single argument and returns a value of the concrete program typo 
Boolean (defined by the concrete instance- CI_Boolean_l). Execution of a function 
may not change the ahstmcf value of any of the operation's arguments. The assertion 
that function argument values do nol change is an implicit conjunct of a function's 
ensures clause. Like Toggle. Test has no pre-condition. The ensures clause of 
Test specifies that the value returned by Test (denoted by Test) corresponds to the 
abstract value of Test's argument. Thus Test may be used to query the state of the 
flip-flop. As a behavioral interface specification. AI.Flipflop requires all conforming 
implementations to provide (at least) a representation for type Flipflop (initialized 
to a value representing FALSE), an implementation for Toggle, and an implementation 
for Test. 
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implementation CI_Flipflop_2 

interface 

type Flipflop is represented by- 
state : Integer range 0 .. 255 := 0 

end representation 

procedure Toggle (f : Flipflop) is 
begin 

f.state := (f.state + 1) mod 256 
end Toggle 

function Test (f : Flipflop) : Boolean is 
begin 

return ((f.state mod 2) =1) 
end Test 

end CI_Flipflop_2 

Figure 3.2: Concrete Instance CI_Flipflop_2 

Figure 3.2 shows a simple concrete component named CI_Flipf lop_2. This com- 
ponent provides one of infinitely many possible implementations of the flip-flop ADT 
specified by AI_Flipf lop. By convention we will suffix implementation component 
names with an underscore followed by a number used to distinguish between different 
implementations of the same specification. For example, the name "CI_Flipflop_2" 
may be interpreted as the second concrete instance implementing AI_Flipf lop. (As- 
sume that CI_Flipf lop_l, not shown, is the obvious implementation using a Boolean 
for the representation of Flipflop.) The structure of CI_Flipflop_2 is very similar 
to that of AI_Flipf lop shown in Figure 3.1. As with AI_Flipf lop, the context and 
auxiliary sections are empty and not shown since only built-in types and opera- 
tions are used within the component. The interface section includes a definition 
of the concrete program type Flipflop and implementations of the two associated 
operations Toggle and Test. 

The data representation of type Flipflop in CI_Flipflop_2 consists of a single 
representation component, labeled state. The state component is an object of the 
concrete type Integer (as defined in CI_Integer_l) restricted to the interval [0, 
255] and having an initial value of 0. The operation Toggle increments the value of 
its argument's state component by one each time it is called unless the value is 255 
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implemented by f, depends on (is defined in terms of) the behavior specified or 

in which case it is reset to 0. The := (assignment)'1. + (addition), and mod (modulus) 
operations are provided by CI Jnteger_l. The operation Test returns the Boolean 
value True if the value of its argument's state component is odd. otherwise« it returns 
False. 

3.2    The uses Relationship 

I lie uses relationship describes the fixed syntactic dependency of one component 
on another. The uses relationship may be defined informally as follows: 

Component (", uses component G if and only if the meaning of G de- 
pends either directly or indirectly on the meaning off',. 

I he uses relationship is modeled by the uses relation defined in Equation 2.5 in 
Chapter 2. If component C, uses component C> tlireethj, then C> is in the context 
of G Htid entities defined in C-, may be used in the definition of G. If component 
G uses component C> inil/reefli/. then ('■> is not in the context of (\. but is in the 
context of some component that C, uses. In both cases, the behavior either specified 
or i 
implemented by (',. 

I lie uses relationship is very important from a maintenance perspective. If com- 
ponent G uses component ('■>. then any modification to G may alter the behavior 
de.-cribed by C\. Also, in order to fully understand a component, it may be necessary 
to understand aspects of all other components that it uses. The uses relationship is 
often viewed as a "client/supplier" relationship [Mey8S. p. 73] [BooOl. p. 101]. If G 
uses G then G i-s » client of ('■, which is a supplier to (\. The uses relationship 
gives G risihilif,/ to elements defined in C-> and elements defined in components that 
G uses. Depending on the language mechanisms used. G may or may not have 
visibility to all features defined by C-, and the components it uses. 

1 he most familiar form of uses describes coupling between two concrete instances. 
Uiis relationship should be familiar to anyone who has developed software using a 
programming language that supports separately compiled modules. These languages 
have import or inclusion mechanisms that encode a direct uses relationship between 
two modules. Examples include the with context clause in Ada. the import statement 
in Modula-2, and the #include preprocessor directive in C+ + . In the notation 
presented in this chapter, a direct uses relationship is encoded with a uses clause10 

in the context section. For example, a concrete instance built specifically using 
CI-Flipflop_2 would include in its context section the clause "uses  CI_Flipf lop_2". 

'Hi-ye we consider := as nil operation defined on type Integer, not as n program statement as 
in Ada. 

'"Note that in Ada. the use clause serves the different purpose of allowing identifiers already in 
scope to he referenced without using their fully qualified names. 
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ALFIipflop 

I uses 

Cl Boolean 1 

Figure 3.3: The uses Relationship 

The uses relationship also may describe a fixed dependency of one specification 
on another specification, of an implementation on a specification, or of a specifica- 
tion on an implementation. Figure 3.3 shows a component coupling diagram (CCD) 
that graphically depicts the (implicit) uses relationship between AI_Flipf lop and 
CI_Boolean_l. In CCD's, abstract components (both instances and templates) are 
depicted as clear boxes with rounded corners. Concrete components (instances and 
templates) are depicted as shaded rectangular boxes. The component name is shown 
within each box. The thick solid arrow from AI_Flipf lop to CI_Boolean_l represents 
the uses relationship between the two components. We use thick arrows to depict 
dependency (coupling) relationships. Note that typically we will not show implicit 
dependencies on built-in components in CCD's as shown in this example. 

3.3    The implements Relationship 

The implements relationship is a behavioral relationship between a concrete com- 
ponent and an abstract component. The implements relationship may be defined 
informally as follows: 

Concrete component C implements abstract component A if and only if 
C provides an implementation of all behavior specified by A. 

The implements relationship is a conformance relationship between C and A 
modeled by the imps relation defined in Equation 2.2. However, imps describes 
a relationship between instance components only. We extend the definition of im- 
plements to include implementations that are templates. In this extended view, 
implements is an overloaded term for three distinct relationships: 

• If C is a concrete instance and A is an abstract instance, then the claim that 
C implements A is an assertion that imps(C,~A) holds. 
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f    ALFIipflop    J 

impler 

CI_Flipflop_2 

Figure1 3.4: The implements Relationship 

• Iff is a concrete template and .1 is an abstract instance1, then the claim that f 

implements .4 is an assertion that for muj instantiation C" off. imps(f. .4) 
holds. 

• Iff is a concrete template and .4 is an abstract template, then the claim that 

f implements .4 is an assertion that for (ini/ instantiation C" off there exists 

somr  instantiation .4' of .4. such that imps(f'..4') holds. 

We will discuss examples of each of these three1 cases in this chapter. In this 

section we discuss the first case, the implements relationship between a concrete 

instance and an abstract instance. In Section 3.1 we present examples of the other 
two cases. 

As an example of the implements relationship, consider the abstract instance 

AI.Flipflop shown in Figure 3.1 and the concrete instance- CI.Flipflop_2 shown 

in Fit:ure 3.2. We claim that CIJFlipflop_2 implements AI_Flipflop. That is. 

anywhere that there is a requirement for the behavior specified by AI.Flipflop. the 

implementation CIJFlipflop_2 may be used to satisfy that requirement. This rela- 

tionship is ^rapine-ally ch-pjcted in the CC'D in Figure1 3.4. 44K
1
 thin solid arrow from 

CI_Flipflop_2 to AITTipflop represents the' implements relationship between the1 

two components. We use1 thin arrows to depict behavioral relationships which are1 not 

ele'peneleiK'v (coupling) relatieuiships. 

AsieF from its suggestive name1 anel obvienis structural similarity, the1 content of 

CI_Flipflop_2 as shown in Figure 3.2 contains no statement of its purported rela- 

tionship to AI_Flipflop. If we- assume1 that CI_Flipf lop_2 was specifically designed 

to implement ALFIipflop. tlion it seems natural that this information should be 

recoreled in the souire code of CI_Flipf lop_2 to help explain the1 intended behavior 

of the ceimpoiieiit to prospertive maintainers. Furthermore, information explaining 

lnnr CI_Flipflop^2 may be1 viewed as implementing AI_Flipflop weaikl also be1 use- 

ful to anyone attempting te> justify the1 claim that the1 implements relationship really 

floes hold between these two components. 
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implementation CI_Flipflop_3 
implements  AI_Flipflop 

interface 

type Flipflop is represented by 
state : Integer range 0 .. 255 := 0 

end representation 
exemplar ff_rep 
correspondence ff = ((ff_rep.state MOD 2) = 1) 

procedure Toggle (f : Flipflop) is 
begin 

f.state := (f.state + 1) mod 256 
end Toggle 

function Test (f : Flipflop) : Boolean is 
begin 

return ((f.state mod 2) =1) 
end Test 

end CI_Flipflop_3 

Figure 3.5: Concrete Instance CI_Flipf lop_3 

Consider the concrete instance CI_Flipf lop_3 shown in Figure 3.5. The only 
differences between CI_Flipflop_2 and CI_Flipflop_3 are the implements clause 
in the header and the exemplar and correspondence clauses in interface section 
of CI_Flipf lop_3. None of these three additions affects the operational behavior 
described by CI^Flipflop_3. Thus CI_Flipf lop_3 describes an implementation of 
behavior identical to behavior implemented by CI_Flipflop_2. 

The implements clause in the header of CI_Flipflop_3 explicitly records an 
intended implements relationship with AI_Flipflop. The exemplar clause and 
correspondence clause in CI-Flipf lop_3 explain an intended correspondence be- 
tween the representation states, modeled by INTEGER, and the abstract states, modeled 
by BOOLEAN. The identifier MOD names a math operation for integer modulus (MOD is 
defined in MI_Integer_Theory). The name f_rep.state denotes the abstract value 
corresponding to the representation-level value of the state field of an object of type 
Flipflop. Since the state field is an object of program type Integer, its values 
correspond to abstract values of math type INTEGER. The correspondence defines the 
relation {<0,FALSE>, <1,TRUE>, ..., <254,FALSE>, <255,TRUE>} mapping even 
representation values to the abstract state FALSE and odd values to TRUE. 
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The nrlflitioiwil information encoded in CI.Flipflop_3 serves several useful pur- 

poses. The statement that CI_Flipflop_3 implements AI_Flipflop ••officially" 

records design intent of the itnplementer of CI_Flipflop_3 and tells a potential main- 

tainer (or a library browsing tool) where to look for a description of the requirements 

tin- component must satisfy. The implements clause also makes explicit the obliga- 

tion that CI.Flipf lop_3 must conform structurally and semantically to AI_Flipf lop 

when used as an implementation of AI_Flipflop. For example, the implements 

clause shown in Figure 3.Ö might require a compiler to check for the structural con- 

formance of CI.Flipflop_3 to AI_Flipflop when CLFlipflop_3 is compiled. Both 

CI_Flipilop_2 and CI.Flipflop..3 conform structurally to AI_Flipflop since they 

provide a representation for the type Flipflop and operations with names and pa- 

rameter profiles that match those of AI.Flipflop. 

Within a library of "certified" components, the implements clause (perhaps in 

object code form) also might be interpreted as a statement that the implements 

relationship has been justified to whatever degree required. In this case, only con- 

crete components that have been certified to conform structurally and semanticallv 

to the specifications which they claim to implement would be entered into the librarv. 

Officially recording justified implements relationships elsewhere, however, provides 

a more flexible solution. For example, if justified implements (and extends) rela- 

tionships are recorded in a component library database, new relationships may be 

added and existing ones "revoked" without modifying any component content. Such 

a database of relationships would be useful for component library browsing as well as 
for use by component integration tools. 

I he claim that a concrete component implements an abstract component is an 

assertion that the concrete component is a correct implementation with respect to 

the specification provided by the abstract component. The correspondence clause 

provides information necessary for formally verifying the correctness of an ADT and 

thus for justifying that the implements relationship holds between a component that 

implements a type and a component that specifies the type. The relation expressed 

by the correspondence clause is also called an abstraction function[],GSC). p 70]. a 

ntrirn ftnu•//o/r.lonfH). p 1S2]. and more generally an abstraction 7Wr//w/[S\Y097j. 

In short, the correspondence clause provides a way to compare the effect of 

executing operations on the concrete representation state1 described by an implemen- 

tation component, with the effect of executing the same operations on the abstract 

state described by a specification component. In order for an implementation to 

be considered correct, any concrete state reachable from a legal sequence of (zero 

or more) operations must correspond to an abstract state reachable from the same 

sequence of operations. Xote that the initially clause (as shown in Figure 3.1) 

ensures that the concrete state of an object corresponds to its specified abstract state 

prior to execution of any operations that affect the state of that object. This serves 

as a basis for an induction argument stating that after an arbitrarily long sequence 
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of operations, the concrete state of an object will still correspond to an appropriate 
abstract state as specified. The details of formally justifying the implements rela- 
tionship are beyond the scope of this dissertation and have been discussed elsewhere 
in terms of formal verification of ADT's [Hoa72, LG86, Jon90, EH094]. 

AI_Flipf lop, CI_Flipf lop_2, and CI_Flipf lop_3 are so simple that the claimed 
implements relationships appear easily justified in both cases. But useful software 
components tend to be much more complex than these simple examples. In general, 
the process of convincingly justifying that a concrete component implements an 
abstract component may require a great deal of effort and even creativity. By ex- 
plicitly stating the correspondence between an implementation's data representation 
and a model used to specify desired program behavior, the component implementer 
documents a critical aspect of how the behavior described by an implementation may 
be viewed as corresponding to the behavior described by a specification. 

A component implementer may use the implements relationship to state how 
an implementation component, possibly in object code form, should be viewed by 
prospective clients. By claiming that concrete component C implements abstract 
component A, the implementer is claiming that A serves as an appropriate simplified 
description or "cover story" for behavior implemented by C. With CI_Flipf lop_3, 
the abstract state space modeled by BOOLEAN is different and simpler (much smaller) 
than the concrete state space of INTEGER modulo 256. In this case, AI_Flipf lop 
presents a simpler conceptual view or "mental model" of flip-flop behavior than that 
described by CI_Flipf lop_3. In addition to supporting substitutability, a primary 
goal of establishing the implements relationship is to identify an abstract description 
of an implementation's behavior that is easier for a client to understand than the 
description of behavior provided by the implementation. 

The benefits of including the implements, exemplar, and correspondence clauses 
in a concrete component should be clear. Nevertheless, there are reasons why it might 
be useful to maintain this information elsewhere, either in addition to, or perhaps even 
instead of maintaining it within the content of concrete components. We discuss this 
issue in Section 4.3.5. For now, we reiterate that the implements relationship to 
AI_Flipf lop may be justified for both CI_Flipf lop_2 and CI_Flipf lop_3 and that 
the additional information provided by CI_Flipf lop_3 serves to explain how this 
implements relationship may be justified. 

3.4    The needs Relationship 

The needs relationship is a dependency relationship between a concrete template 
and an abstract instance. It expresses a deferred dependency between an instantiation 
of the concrete template and an implementation of the abstract instance. The needs 
relationship may be defined informally as follows: 

49 



Concrete template C needs abstract instance .-1 if and only iff' uses .4 

and. for all instantiations off', f's references to program elements in .4 

are replaced by references to the corresponding program elements in some 

concrete instance that implements .4. 

'I lie relationship name "needs" is short for •'needs an implementation of". The 

needs relation (defined in Equation 2.G) models the needs relationship between 

two components. However, in this chapter we allow a concrete template to have 

more than one deferred dependency. That is. a single concrete template may need 

implementations of more than one abstract instance. Furthermore, it is possible that 

a concrete template may need more than one implementation of the same abstract 
instance. 

3.4.1    Implementation-Level needs 

Before looking at an example of a deferred dependency expressed by the needs 

relationship, we will examine a closely related fixed dependency relationship. To 

set up both examples, we introduce a new abstract instance. Figure 3.0 shows the 

abstract instance AI_Threeway which serves as an austere interface describing the 

behavior of a ""three-way" light bulb switch with one "off" state and three1 different 

"on" states. The auxiliary section includes the declaration of Z4. a math subtype 

of UITEGER constrained to the interval [0.3]. The interface section of AI_Threeway 

specifies the type Threeway and the operations Advance and On. Tin- type Threeway 

is modeled by Z4. The design intent here is that the abstract state 0 models the 

switch's "off" state and that the states 1. 2. and 3 model the "low", "medium", and 

"hieh" brightness levels respectively. The Advance operation changes the state of 

its areument to the next higher brightness level or to "off" from ""high". The On 

operation returns True if the switch is in one of the three "on" states corresponding 

to 1. 2. or 3. If necessary, a client could cycle through the switch states using Advance 

and On to determine the brightness level. 

Figure 3.7 shows the concrete instance CI_Threeway_l. CI_Threeway_l imple- 

ments AI_Threeway and uses CI_Flipflop_3 (shown in Figure 3.Ö) to do so. The 

fixed dependency on CI.Flipflop_3 is expressed with a uses clause in the context 

section. CI.Threeway.l also uses AI.Threeway in order to express the correspon- 

dence. Since CI_Threeway_l uses CI_Flipflop_3. it has direct access to the rep- 

resentation of type Flipflop defined by CI.Flipflop_3. From the perspective of 

CI_Threeway_l. the concrete type Flipflop is modeled by a singleton of math type 

INTEGER (the model of concrete type Integer) constrained to the interval [0, 255]. 

I hits by referring to a specific concrete component, a client component such as 

CI_Threeway_l commits to a specific concrete representation. 

The auxiliary section includes the definition of the math operation PARITY used 

in the correspondence clause. The interface section defines the representation of 

Of I 



specification AI_Threeway 

auxiliary 

math subtype Z4 is INTEGER 
exemplar Z 
constraint 0 <= Z and Z <= 3 

interface 

type Threeway is modeled by Z4 
exemplar T 
initially T = 0 

procedure Advance (t : Threeway) 
ensures  t = (#t + 1) MOD 4 

function On (t : Threeway) : Boolean 
ensures  On = (t > 0) 

end AI_Threeway 

Figure 3.6: Abstract Instance AIJThreeway 

type Threeway and implementations for Advance and On. The representation of type 
Threeway is a pair of objects, labeled f f 1 and f f 2, both of type Flipf lop as defined 
in CI_Flipf lop_3. These two objects maintain which of the four states the switch is 
in as explained by the correspondence. The two flip-flops are simply used as a two-bit 
counter. Since CI_Flipf lop_3 represents Flipf lop with an object of type Integer 
constrained to the interval [0, 255], CI_Threeway_l represents Threeway as a pair 
of objects of type Integer. Thus the representation-level model of type Threeway 
as defined by CI_Threeway_l is a pair of INTEGER objects with values constrained to 
the interval [0,  255] . 

The correspondence clause defines a relation mapping each of the 2562 represen- 
tation states to one of the four abstract states of Threeway defined in AIJThreeway. 
For example, any representation in which both flip-flop objects have an even value, 
maps to the abstract state 0 which models the switch in the "off" position. 

The implementation of the Advance operation is defined in terms of Toggle and 
Test. The implementation of On is defined in terms of just Test. These imple- 
mentations do not directly access the representation-level state of the flip-flops they 
manipulate. Thus in this case, there is no reason why CI_Threeway_l needs to be 
designed with a fixed dependency on CIJFlipf lop_3. Nevertheless, without reference 
to an abstract specification of CI_Flipf lop_3 (at the point in CI_Threeway_l where 
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implementation CI_Thrceway_l 
implements  AI_Thrccv;ay 

context 
uses C:_Flipfiop_3 

auxiliary 
math operation PARITY (I : INTEGER) : INTEGER 

definition  I KOD 2 

interface 

type Threeway is represented by 
fll : Flipflop 
ff2 : Fiipfiop 

end representation 
exemplar tv:_rcp 

correspondence  tw = 1 * PARITY(tw_rcp.ffi.state) + 
2 * PARITY(tw_rcp.ff2.state) 

procedure Advance (t : Threeway) is 
begin 

Toggle (t.ffi) 
if not Test(t.ffi) then 

Toggle (t.ff2) 
end if 

end Advance 

function On (t : Threeway) : Boolean is 
begin 

return(Test(t.ff1) or Tcst(t.ff2)) 
end On 

end CI_Thrcewav 1 

Figure l].7: Concrete Instance CI_Threeway_l 

CI.Flipf lop„3 is used), die correspondence must he defined in terms of the Flipflop 
representation provided hv CI.Flipflop_3. 

Figure 3.S shows concrete template CT_Threeway_l. an alternative implementa- 
tion of AI_Threeway that presents an example of the needs relationship. Instead 
of dependiim; on a specific flip-flop implementation. CT_Threeway_l is parameterized 
In- a concn>te instance that implements AI.Flipflop. The deferred dependency of 
CT_Threeway_l on smnr (run/) ini])lementation of AI.Flipflop is expressed hv the 
needs clause at the end of the context section. Any component that includes one or 
more needs clauses in its context section is a template. The identifier CIJFlipflop 



implementation CT_Threeway_l 
implements  AI_Threeway 

context 
uses  AI_Flipflop 
needs CI_Flipflop implementing AI_Flipflop 

auxiliary- 
math operation BTI (B : BOOLEAN) : INTEGER 

definition  if B then 1 else 0 

interface 

type Threeway is represented by 
ffl : Flipflop 
ff2 : Flipflop 

end representation 
exemplar tw_rep 
correspondence  tw = 1 * BTI(tw_rep.ffl) + 2 * BTI(tw_rep.ft2] 

procedure Advance (t : Threeway) is 
begin 

Toggle (t.ffl) 
if not Test(t.ffl) then 

Toggle (t.ff2) 
end if 

end Advance 

function On (t : Threeway) : Boolean is 
begin 

return(Test(t.ffl) or Test(t.ff2)) 
end On 

end CT_Threeway_l 

Figure 3.8: CT_Threeway_l needs AIJFlipf lop 

in the needs clause is a formal parameter name representing the concrete instance 
supplied as an actual parameter when CT_Threeway_l is instantiated. Note that the 
needs clause presented here is very similar to the needs clause of Goguen's Library 
Interconnection Language (LIL) [Gog86, p. 22]. 

CTJThreeway-1 has a fixed dependency on AI_Flipf lop as indicated by the second 
uses clause in the context section. CT_Threeway_l uses AI_Flipf lop to specify the 
behavioral requirements of any concrete instance supplied as an actual parameter. 
AI_Flipflop also provides the model for type Flipflop and behavioral specifications 
for operations Toggle and Test used in CT_Threeway_l.  Therefore, no matter how 
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AI_Threeway 

implements 

CT_Threeway_1 

I needs 

ALFIipflop 

Figure 3.0: CT_Threeway_l needs AI_Flipf lop 

CT_Threeway_l is instantiated, it is possible to reason about the behavior of the 

roncrete instance generated in terms of AI^Flipflop. In particular, it is possible 

to justify the claim that ami instance of CT_Threeway_l implements AI_Threeway 

which is the claim expressed in the first line of Figure 3.8. Thus this is an example 

of the second form of implements listed on page -JO. 

The interface section of CT_Threeway_l is identical to that of CI_Threeway_l 

except for the correspondence clause. The correspondence is different because the 

representation-level model of type Threeway defined in CT_Threeway_l is different 

from that of type Threeway defined in CI_Threeway_l. The mathematical model 

of type Flipflop used in CT_Threeway_l is BOOLEAN as specified in AI_Flipflop. 

Therefore the representation-level model of type Threeway defined in CT_Threeway_l 

is a pair of BOOLEAN objects. The correspondence clause uses the math operation 

BTI (Boolean-']o-Integer) to convert FALSE to 0 and TRUE to 1. The relation defined 

by the correspondence maps the four representation states to the four abstract states 

defined in AI_Threeuay. For example, any representation for which values of both 

flip-flops correspond to TRUE maps to the abstract state 3 which models the switch 
in the "high" position. 

figure 3.0 shows a component coupling diagram depicting the implements and 

needs relationships encoded by CT_Threeway_l. The needs relationship is depicted 

by a thick solid arrow from a concrete component to an abstract component. Xote 

that the uses relationship between CT_Threeway_l and AI_Flipflop is not shown 

since a needs relationship always implies a uses relationship. 
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Since CT_Threeway_l is a concrete template, it must be instantiated in order to 
describe the behavior of a concrete instance that may be integrated into a component- 
based system. In this case, instantiating CT_Threeway_l requires selecting a compo- 
nent that implements AI_Flipflop to fulfill the stated need. The code describ- 
ing an instantiation of CT_Threeway_l with the CI_Flipf lop_3 implementation of 
AI_Flipf lop is as follows. 

implementation CI_Threeway implements AI_Threeway 
by CT_Threeway_l with (CI.Flipflop => CI_Flipflop_3) 

The name CI_Threeway refers to the concrete instance resulting from the instan- 
tiation of CT_Threeway_l with actual parameter CI_Flipf lop_3 bound to the formal 
parameter CI_Flipf lop. The instantiation explicitly states that CT_Threeway im- 
plements AIJThreeway which follows from the implements relationship between 
CT_Threeway_l and AIJThreeway. Therefore we may reason about the behavior of 
the code using CI_Threeway in terms of the specification provided by AIJThreeway. 
In this example, the behavior implemented by CI_Threeway is identical to the behav- 
ior described by CI_Threeway_l shown in Figure 3.7. As a result of this instantiation, 
only the program elements described by AIJThreeway are visible to clients of the in- 
stantiation CI_Threeway. Thus this single instantiation serves two distinct purposes. 
First it "fills in the holes" of CT_Threeway_l to create a usable concrete instance, 
CI_Threeway. Second, it associates with this concrete instance the abstract interface 
AIJThreeway that describes how clients should view CIJThreeway and, in fact, the 
only program elements defined in CTJThreeway_l that are available for use by client 
code. 

Using the model developed in Chapter 2, we describe the meaning of CIJThreeway, 
the component described by the above instantiation, as follows. CIJFlipflop_3 and 
CI_Threeway are members of CI and CT_Threeway_l is a member of CT. The be- 
havior implemented by CIJThreeway, «S(CIJThreeway), is modeled by the element of 
B given by <S(CT_Threeway_l)(S(CIJFlipf lop_3)). 

As we noted at the beginning of this section, a concrete template may have de- 
ferred dependencies on implementations of more than one abstract component and 
may even have multiple independent dependencies on the same abstract compo- 
nent. For example, it would be possible for a different concrete template imple- 
menting AIJThreeway to have two needs clauses in the context, one naming CIJFF_1 
and the other naming CIJFF_2, both representing concrete instances implementing 
AIJFlipflop. Then the two fields ff 1 and ff2 representing the type Threeway could 
be declared of types CIJFF.l JFlipf lop and CIJFFJ2 JFlipflop. In this case instan- 
tiation of the concrete template implementing AIJThreeway would require two actual 
parameters, both implementing AIJFlipflop. The actual parameters might be the 
same concrete instance or two different implementations of AIJFlipflop. Clearly this 
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simple example presents little motivation for using two diflerent implementations of 

AI_Flipflop. However. Sitaraman discusses how. in general, such a strategy is useful 

for performance-parameterized components [Sit92]. 

3.4.2    Specification-Level needs 

On page H we listed throe distinct relationships to which we apply the overloaded 

term implements. The implements relationship between a concrete instance and 

an abstract instance was exemplified by CI.Flipf lop_3 implementing AI.Flipflop. 

The implements relationship between a concrete frmplnlr and an abstract instance 

was exemplified by CT_Threeway_l implementing AI_Threeway. We are now ready 

to discuss an example of the third form of implements, a concrete template imple- 

menting an abstract template. 

figure 3.10 shows the encoding of abstract template AT.Stack. a behavioral inter- 

face specification for a stack which is generic with respect to the type of elements it 

may contain. AT_Stack has a deferred dependency on the type of elements contained 

in the stack. An instantiation of AT_Stack needs an implementation of a specific 

type to serve as the typo of elements contained within the stack". AT_Stack uses 

AI_AnyType. a special abstract instance, to express its requirement for a component 

providing a type. AI„AnyType is special in that, by convention, every concrete in- 

stance that defines at least one typo implements AI„AnyType. AI_AnyType names 

a sinele typo. AnyType. which has no associated mathematical model. When an 

abstract template that needs an implementation of AI_AnyType is instantiated, the 

mathematical model of the concrete type that corresponds to AnyType is used to 

describe the math model of the resulting instance. If the component serving as the 

actual parameter corresponding to AI_AnyType defines more than one type, then the 

jir.tf type defined is matched to AnyType. (A type other than the first type defined 

by a concrete instance may be matched with AnyType by using an abstract instance 
to -mask out" all but the desired type.) 

In AT^Stack. the name AnyType represents the type supplied by the component 

which servos as the actual parameter corresponding to CI_StackItemType in an in- 

stantiation of AT.Stack. In the auxiliary section, the parameterized math module 

KT_String_Theory is instantiated to product- the math module MI.String.Theory 

which defines the math type STRING used to model a stack. The formal (type) pa- 

rameter ItemType of MT_String_Theory represents the math typo of the elements 

of the math type STRING. Thus, for example, if AT_Stack were instantiated with 

CI_Integer.l as the actual parameter for CI_StackItemType. math type STRING 

would refer to a string of math type INTEGER. In this instance, the mathematical 

model of Stack would bo a string of INTEGER values. 

'' I In' stark specified in Figure 3.10 is a lirnnnr/rurotis stack. That is. all elements in instances of 
the specified stack are nhjerts of a single fixed tvpe. 



specification AT_Stack 

context 
uses MT_String_Theory 
uses AI_AnyType 
needs CI_StackItemType implementing AI_AnyType 

auxiliary 
math module MI_String_Theory is MT_String_Theory 

with (StringltemType => AnyType) 

interface 

type Stack is modeled by STRING 
exemplar  s 
initially s = EMPTY_STRING 

procedure Push (s : Stack, x : AnyType) 
ensures  s = #s * <x>  and x = #x 

procedure Pop (s : Stack, x : AnyType) 
requires s /= EMPTY_STRING 
ensures  #s = s * <x> 

function Length (s : Stack) : Integer 
ensures Length = Is| 

end AT Stack 

Figure 3.10: Abstract Template AT_Stack 

The interface section of AT_Stack defines the program type Stack and three 
operations: Push, Pop, and Length. As noted above, type Stack is modeled by a 
mathematical string of elements. The initial value of a Stack object is modeled 
by an empty string. The (constant) math operation EMPTY-STRING is provided by 
MI_String_Theory. The post-condition of Push specifies that after the Push operation 
completes, the new value of the stack (s) is modeled by the old value of the stack 
(#s) concatenated with (*) the singleton string containing the element pushed onto 
the stack (<x>). Also, the value modeling the element being pushed, is the same 
before and after the operation (x = #x)12. Pop's requires clause specifies the pre- 
condition that the stack not be empty. Pop's ensures clause specifies that after the 

12The post-condition of Pop in a RESOLVE-style stack interface does not require that the element 
being pushed is unchanged. We discuss the RESOLVE approach in the context of a queue component 
in Section 5.2. 

57 



Pop operation, the new value of the stack (s) concatenated with the singleton string 

containing the dement popped from the stack (<x>) will he the same as the old value 

modeling the stack. The Length operation is a function which returns the length of 

the stack, modeled by the length of the string re-presenting the stack (Is I). 

Figure 3.11 shows the encoding of concrete template CT_Stack_l which provides 

an implementation of the behavior specified by AT.Stack. CT_Stack_l has two de- 

ferred dependencies. First, it needs an implementation of AI.AnyType to provide tin- 

type of elements to be contained in the stack. Second, it needs an implementation 

of nn instinirc of AT^One^Way_List that has been instantiated with the same con- 

crete instance supplied as the first parameter, the actual parameter corresponding to 

CI_StackItemType. The list implementation supplied as the second parameter is used 

as the stack representation. AT_One_Way_List specifies a generic list which is modeled 

by a pair of STRING values, a left string and a right string, both initially empty. The 

insertion and removal point for elements in the list is the leftmost element of the right 

string.  A more detailed description of the One_Way_List specification mav be found 

in ;s\viio.r. 

The operations Push. Pop. and Length are implemented trivially by calling the 

list operations Add-Right. Remove_Right. and Right_Length respectively. This im- 

plementation only uses the right string of the list which grows to the left as elements 

are added. Since Stack is modeled by a string that grows to the rif/lif as elements 

are pushed onto it. the correspondence clause states that the right string model- 

ing the stack's list representation, when reversed, corresponds to the string modeling 

the stack. Note that the math operation REVERSE is defined in MT.String.Theory 

and is available for use here only because CT_Stack_l uses AT_Stack which uses 

MT_String_Theory. 

Fiuure 3.12 is a CT'D showing the behavioral relationships between CT_Stack_l. 

AT^Stack and the other components upon which it directly depends. Xo uses rela- 

tionships are shown since these are implied by the needs relationships. Also, we do 

not show dependencies on components providing built-in types such as CI_Integer_l 

which defines the type Integer returned by the Length function. 

We claim that CT_Stack_l implements AT_Stack by the third definition of im- 

plements (on page -Ifi). That is. for any instantiation C of CT^Stack_l there ex- 

ist- snnir instantiation 7 of AT_Stack. such that imps(C. 7) holds. In this case, 

if the same concrete instance is supplied as the actual parameter corresponding to 

CI_StackItemType for both AT_Stack and CT.Stack.l. then the concrete instance 

described by the instantiation of CT^Stack^l will implement the abstract instance 

described by the instantiation of AT_Stack. 

figure 3.13 shows the code for two instantiations used to generate a stack of 

flip-flops.   The first  instantiation describes the concrete instance CI_Flipflop_List 

."is; 



implementation CT_Stack_l 
implements  AT_Stack 

context 
uses  AI_AnyType 
uses  AT_One_Way_List 
needs CI_StackItemType implementing AI_AnyType 
needs CI_List implementing AT_One_Way__List with 

(CI_ListItemType => CI_StackItemType) 

interface 

type Stack is represented by- 
holder : List 

end representation 
exemplar s_rep 
correspondence s = REVERSE(s_rep.holder.right) 

procedure Push (s : Stack, x : AnyType) 
begin 

Add_Right(s.holder) 
end Push 

procedure Pop (s : Stack, x : AnyType) 
begin 

Remove_Right(s.holder) 
end Pop 

function Length (s : Stack) : Integer 
begin 

return (Right_Length(s.holder)) 
end Length 

end CT Stack 1 

Figure 3.11: Concrete Template CT_Stack_l 

which implements the behavior specified by the abstract instance generated by in- 
stantiating AT_One_Way_List with concrete instance CI_Flipf lop_3 (shown in Fig- 
ure 3.5). The implementation of CI_Flipf lop_List is provided by the instantiation of 
CT_One_Way_List_l with CI_Flipflop_3. The concrete instance CI_Flipf lop_Stack 
is generated similarly. It implements the abstract instance formed by instantiating 
AT_Stack with CI_Flipf lop_3. The implementation of CI_Flipf lop_Stack is pro- 
vided by instantiating CT_Stack_l with CI_Flipf lop_3 serving as the element type 
and CI_Flipf lop_List serving as the list implementation used to represent the stack. 
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c AT Stack 

implements 

CT_Stack 1 

I needs 

AT_One_Way_List 

ALAnyType    j 

implementation CI_F1ipflop_List 
implements AT_Onc_Way_List with 

(CI_ListItcmType => CI_Flipflop_3) 
by CT_0r.c_Way_List_l with 

(C:_ListItcmTypo => CI_Flipflop_3) 

implementation CI_F1ipflop_Stack 
implements AT_Stack with 

(CI_St,ackTtcmTypc   =>   CI_F1 ipf lop_3 ) 
by  C7_SLack_l   with 

(CI_Si.ackItcmTypc   =>   CI_Flipflop_3, 
CI_List   =>   CI_Flipflop_List 

Figure 3.1.'5: Instantiation of CT_Stack_l 

I lie needs relationship between an implementation and a specification expresses a 

pnh/innrphi,- relationship. Many different •forms" or implementations of the abstract 

component operations may be used by the objects declared from instances of the con- 

crete component. There are two primary strategies for encoding this polymorphism 

in programming languages. Object-oriented disciplines typically use inlirritmirr and 

(h/iiatmr Inrirliiif/ to achieve polymorphism. The notation used in this chapter uses 

parameterization ;1nd static binding. RFS()LYF/AdaOr>. discussed in Chapter ö uses 

a combination of parameterization and inheritance. Section 4.2 discusses program- 

mine lammaue support  for expressing the needs relationship.   In the next section 
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we discuss the benefits of designing components using the implements and needs 
relationships. 

3.4.3    Integration Dependencies Versus Design Dependencies 

Recall from Chapter 1 the difference between design dependencies and integration 
dependencies. A component's design dependencies exist independent of any particular 
use of the component. A component's integration dependencies are the dependencies 
it has on other components once integrated into a component-based system. The 
uses relationship between concrete instances naturally expresses integration depen- 
dencies and also may express fixed design dependencies. For example, the relationship 
CI_Threeway_l uses CI_Flipf lop_3, as encoded in Figure 3.7, expresses a fixed de- 
sign dependency. The needs relationship may be used to express design dependencies 
as deferred dependencies. The relationship CT_Threeway_l needs AI_Flipf lop, as 
encoded in Figure 3.8 and depicted in Figure 3.9, expresses a deferred design depen- 
dency. Building a system from concrete templates with deferred dependencies may 
require more effort than building a system from (pre-existing) concrete instances with 
only fixed dependencies, since templates must be instantiated. However, as we dis- 
cuss below, using needs relationships instead of uses relationships to express design 
dependencies can significantly improve the understandability, maintainability, and 
reusability of components. 

Figure 3.14 shows three different views of the same component-based system, each 
emphasizing a different component relationship. Figure 3.14(a) is the same diagram 
shown in Figure 2.8 and explained in Section 2.4.1. The arrows represent the (direct) 
uses relationships involving these five concrete instances. The arrows shown in Fig- 
ure 3.14(b) represent the needs relationship. This diagram shows that concrete tem- 
plate AIT needs a component that implements the behavioral specification B and one 
that implements the behavioral specification C. In the system shown, instantiations 
of BIT and C1T satisfy these requirements, respectively. BIT's requirement for imple- 
mentations of D and E and CIT's requirement for an implementation of E are satisfied 
by implementations Dl, El, and El, respectively. The arrows in Figure 3.14(c) repre- 
sent the implements relationship and also the template instantiations necessary to 
build the system. This view conveys exactly the same information as Figure 3.14(b), 
but more clearly depicts AIT, BIT, and C1T as templates with "holes" to be filled in. 

Figure 3.14(a) is a traditional structure chart that shows which parts of the sys- 
tem depend on which other parts. It does not, however, provide any information 
about the role played by each component or what the options might be for compo- 
nent replacement. Figure 3.14(b) and (c) convey more information useful to system 
maintainers and component composition tools. These diagrams provide information 
about the roles played by each sub-component of the system (although no system- 
level specification describing the behavior of AIT is shown).   By depicting external 

61 



Al 

Bl Cl iy 
Dl El 

(a) uses (b) needs 

AIT 

ms 
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Figure 3.1 1: Three Views Of The Same Svsten 

dependencies of AIT. BIT. and C1T at the specification level. Figures 3.14(1») and (c) 

identify requirements for components that might replace BIT. C1T. Dl. or El. 

Consider an example of how the system in Figure 3.1-1 might be modified. Assume 

that the system performance needs to he improved and that analysis determines that 

component El is a bottleneck. The figure shows that BIT and C1T both depend on 

mn/ concrete instance that implements E. not specifically on implementation El. 

Thus, another component that implements E. say E2. can be substituted for El in 

this system without requiring changes to any of the other components. Presumably 

replacing El with E2 would yield better system performance due to differences between 

the two implementations not constrained bv E. 

As another example, implementation Dl might serve as an interface to the system's 

environment. That is. Dl might interact directly with operating system software or 

hardware. If the system needs to be rehosted to a new environment, then compo- 

nent Dl might need to be replaced with another implementation providing the same 

behavior as specified by D. but implementing these services differently in order to 

interact with a different environment. In this case, another component, say D2. that 

interacts with the new environment and which implements D could be substituted for 

Dl without requiring changes to other components in the system. 

We said that each of the three diagrams in Figure 3.11 depicts the same speeifie 

system composed of five components. For this to be the case. Bl must denote the 

component generated by instantiating BIT with Dl and El. Cl must denote the com- 

ponent generated by instantiating C1T with El. and Al must denote the component 

(or top-level program unit) generated by instantiating AIT with Bl and Cl. In this 

case, none of the five integration dependencies shown in Figure1 3.11(a) need be design 

dependencies. That is. prior to instantiation of BIT. there may be no component Bl 
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that specifically depends on Dl and El. If the system were developed from compo- 
nents in a component library, then the library might contain the components AIT, 
BIT, C1T, Dl, and El with design dependencies expressed in terms of implements 
and needs rather than in terms of uses. 

Software engineers generally want to avoid any unnecessary dependencies (cou- 
pling) between components. The needs relationship between an implementation 
and a specification may be applied to achieve this goal. Figure 3.9 depicts the 
needs relationship between the implementation CT_Threeway_l and the specification 
AI_Flipf lop. In this case, the description of the three-way switch implementation 
only depends on the abstract description of a flip-flop (provided by AI_Flipf lop). 
During program execution, an object declared from an instance of CT_Threeway_l 
will indeed depend on some specific implementation of AI_Flipf lop. 

Fully understanding the non-functional characteristics of this object would in- 
clude understanding the non-functional characteristics of the specific flip-flop imple- 
mentation used. However, to understand and reason about the functional behavior 
described by an instance of CT_Threeway_l, it is sufficient to understand the behavior 
described by AI_Flipf lop and AIJThreeway (assuming CT_Threeway_l implements 
AI_Threeway as claimed). 

3.5    The extends Relationship 

Once a software system has been designed and implemented, changes to require- 
ments are likely to call for improved performance and functionality. Improvements 
in performance which do not alter functionality may be addressed by replacing one 
concrete component with another. This section describes the extends relationship 
which is useful for adding new functionality to existing components. 

If component designers had perfect foresight they might be tempted to design 
components with all the functionality that clients could ever want. If this were possi- 
ble, then implements, needs, and uses might be sufficient for describing component 
relationships. Unfortunately, component designers do not have perfect foresight. No 
matter how much forethought designers apply, new requirements almost always ex- 
pose some desirable and unforeseen functionality. Clearly we need some method for 
extending the functionality of components already in use. 

Lack of perfect foresight, however, is not the only reason for providing a means to 
extend the functionality of components. Some disciplines for designing components 
advocate providing a wide assortment of possibly useful operations in each individual 
component [Mey94]. The problem with this approach is that the resulting interfaces 
are more complex and thus more difficult for clients and component implementers 
to understand. Furthermore, this approach either leads to code bloat resulting from 
many unused operations or requires assumptions about optimizations which attempt 
to expunge the code of unused operations.   One reasonable approach is to design 

63 



components with a minimally sufficient set of operations which lay a foundation upon 
which future enhancements may l>e constructed. Whatever initial approach is used, 
however, enhancements to functionality are inevitable. 

3.5.1     Extension Components 

The extends relationship is a behavioral relationship between two abstract com- 
ponents. The extends relationship may be defined informally as follows: 

Abstract component .1, extends abstract component  ,4i if and only if 
every concrete- component which implements .12 also implements A\. 

1 he extends relationship is a conformance relationship modeled by the exts rela- 
tion defined in Kquation 2.3. However, like imps, exts only describes a relation over 
instance components. As we did with implements, we overload the term extends 
to include relationships involving template components. We use the overloaded term 
"'extends" for the following three distinct relationships. 

• If .1; and A2 are both abstract instances, then the claim that .4_> extends .4! 
is an assertion that exts(.4_>. .-1|) holds. 

• If.-l; i> an abstract instance and A2 is an abstract template-, then the claim that 
.4_, extends .-1, is an assertion that for run/ instantiation A', of A-,. exts(.4',. .4,) 
holds. 

• If .4; and A, are both abstract templates, then the claim that .4_> extends .4| is 
an assertion that for mn/ instantiation A'2 of A-, there exists some instantiation 
.4', of .4,. such that exts(.4',.,r,) holds. * 

We discuss an example of the first case in this section. In Section 3.5.3. we discuss 
an example of the third case. The second case is included primarily for completeness. 
We are not aware of any motivating examples for this form of extends. 

In Section 2.3.2 we discussed three- different ways in which a specification compo- 
nent illicit be extended: spcrializnlimi. (jcncwlization. and uiitjmnilatimi. If speci- 
fication components are parameterized, then specialization of specifications may be 
achieved conveniently through the instantiation of abstract templates. If specifica- 
tion components are well-designed from a component-based reuse perspective, then 
there should be little need for generalization (weakening operation pre-conditions). 
Iherefore. in this section we focus on extension by augmentation, that is. extending 
a component by adding new operations. 

As a simple example of the extends relationship, consider the abstract instance 
AI_Flipflop shown in Figure 3.1 and the abstract instance AI.FFExt shown in Fig- 
ure 3,b"). We claim that AI.FFExt extends AI_Flipflop in accordance with the- first 
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specification AI_FFExt 
extends AI_Flipflop 

interface 

type Flipflop is modeled by BOOLEAN 
exemplar  ff 
initially ff = FALSE 

procedure Toggle (f : Flipflop) 
ensures f = NOT #f 

function Test (f : Flipflop) : Boolean 
ensures  Test = f 

procedure Set (f : Flipflop) 
ensures f = TRUE 

end AI FFExt 

Figure 3.15: Abstract Instance AI_FFExt 

of the three definitions of extends above. That is, any concrete instance that imple- 
ments AI_FFExt also implements abstract instance AI_Flipf lop. In this case, as is 
often the case with extension by augmentation, it is easy to see that the extends re- 
lationship is justified. The only difference between AI_Flipflop and AI_FFExt (aside 
from their names) is that AI_FFExt includes the extends clause in its header and a 
specification of the Set operation. The extends clause plays the same role as the 
implements clause discussed in Section 3.3: it records design intent and it identi- 
fies syntactic and semantic conformance checking requirements. The specification of 
procedure Set states that the abstract value of the flipflop passed as an argument is 
TRUE after execution of the operation. Thus AI_FFExt provides the same type and 
operations as AI_Flipf lop plus the additional operation Set. 

From a software maintenance perspective, the relationship between AI_FFExt and 
AI_Flipflop raises an important issue. Notice that AI_FFExt includes a copy of the 
interface section of AI_Flipf lop. This method of encoding a specification extension, 
duplicating the specification being extended, has advantages and disadvantages with 
respect to the alternative approach of specification-by-difference. Figure 3.16 shows 
the abstract instance AI_FFWSet. AI_FFWSet specifies the same behavior as AIJFFExt 
using the specification-by-difference approach. AI_FFWSet uses AI_Flipf lop and de- 
fines its own interface in terms of the interface defined by AI_Flipf lop. The statement 
"re-exports AI_Flipflop" in Figure 3.16 includes all of the interface section of 
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specification AI_FFWSct 
extends AI_Flipflop 

context 
uses AT_Flipflop 

interface 

re-exports AI_Flipflop 

procedure Sot (f : Flipflop) 
ensures f = TRUE 

end AI_FFV; Set 

Figure 3.1G: Abstract Instance AI.FFWSet 

AI_Flipflop in the interface section of AI.FFWSet.   As we discuss in Chapter 4. 
re-exports is a language mechanism similar to a static form of inheritance. 

The primary difference between AI.FFExt and AI.FFWSet is that the behavior de- 
scribed by AI.FFWSet depends upon AI_Flipf lop whereas the behavior described bv 
AI_FFExt does not depend on AI_Flipflop. Note that the extends clause in both of 
these components is only a rhiim documenting an intended relationship and does not 
influence the behavior described by either of the components. An advantage of includ- 
ing; the text of the extended specification's interface in the component extending the 
specification is that the extended specification is more- cohesive. A software engineer 
attempting to understand the behavior specified by AI_FFExt need only look at that 
single component1''. In order to understand the behavior described by AI_FFWSet. 
both AI.FFWSet and AI.Flipflop must be examined. In the case where one speci- 
fication extends more than one other specification, it may be necessary to examine 
several specification components in order to fully understand the behavior described 
by a single extension component. 

An advantage of the specification-by-difference approach is that a specification ex- 
tension component is simpler and focuses attention on the specification of the added 
behavior. Like implementation units, large complex specifications may be easier to un- 
derstand when divided up into smaller units. Also, with the specification-by-difference 
approach, there may be only a single point of modification if a specification compo- 
nent needs to be changed.   If the interface of a specification component with manv 

■' Hi!- a—uiiu-. of course. tli;it the inaintainer understands the behavior of t lie built-in operations 
for Integer and Boolean. 

or; 



^ extends ( > 
ALFIipflop   <- ALFIipflopExt 

extends 
ALFIipflop 

> extends 
Al FFWSet 

Figure 3.17: The extends Relationship Without and With Coupling 

extensions needs to be changed, then all copies of that interface embedded within ex- 
tension specification components probably need to be changed as well. Of course, any 
change to a specification component potentially requires re-justification of extends 
relationships between that component and others. 

One way to mitigate the problem of having a single interface composed of opera- 
tions defined in various components is to use a browser tool capable of displaying a 
complete interface even if its constituent parts are defined in several different compo- 
nents. Such a tool could use the information recorded by re-exports clauses in order 
to determine the full extent of an extended interface. Meyer describes a tool with 
similar capabilities for viewing Eiffel components extended by inheritance in the "flat- 
short" form [Mey94, p. 29]. In the examples which follow, we use the specification- 
by-difference approach to specification extension. It is important to realize, however, 
that the extends relationship is independent of the language mechanisms, such as 
re-exports or inheritance, used to encode a specification extension. As we discuss 
in Chapter 4, programming languages generally do not make this distinction between 
behavioral and syntactic relationships. 

The top of Figure 3.17 shows the CCD depiction of the extends relationship 
between AI_FFExt and AI_Flipflop. The extends relationship is depicted as a 
thin dashed arrow from the extension specification to the specification being ex- 
tended. In addition to its extends relationship with AI_Flipf lop, AI_FFWSet also 
uses AI_Flipf lop. Since specification-by-difference is the most common way of ex- 
tending a specification, rather than drawing two arrows, we depict the combined 
extends and uses relationships with a thick dashed arrow as shown in the bottom 
of Figure 3.17. The thick arrow indicates that AI_FFWSet depends on (is coupled to) 
AI_Flipflop. 
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3.5.2     Implementing Extension Components 

We now discuss three different approaches to encoding an implementation of an 
abstract   extension  component:   the  direct,   coupled,  and  hu/ered approaches.    The 
primary motivation here is to demonstrate another use of the needs relationship 
layered extensions.   The discussion also provides more examples of the implements 
and uses relationships and raises some interesting design and implementation issues. 

Figure 3.IS shows CI_FFWSet_l. a concrete instance that implements AI_FFWSet. 
CI_FFWSet_l is a direct implementation of AI_FFWSet. A direct implementation of a 
specification does not depend on any other implementations of the specification being 
extended. I has a direct implementation must implement the union of the behavior 
specified by all extension components that it implements including that of the behav- 

ior being extended. In this example. CI.FFWSet.l must provide a representation for 
the type Flipf lop and implementations for the operations Toggle and Test as well 

as an implementation for the extension operalion Set. The implementation shown 
in Figure 3.IS uses the obvious representation, a Boolean program type represents 
the BOOLEAN math type used to model a flipflop. We will discuss the advantages and 
disadvantages of the direct implementation approach after looking at examples of the 
other two approaches. 

Figure 3.10 shows CI_FFWSet.2. another component that implements AI.FFWSet. 
CI.FFWSet_2 is a emiph d implementation of AI.FFWSet. A coupled implementation of 
an extension has a fixed dependency on a specific implementation of the specification 
being extended. That is. the extension implementation uses an implementation of 
the specification being extended. In this case. CI.FFWSet.2 has a fixed dependenev 
on CI.Flipflop_2 (Figure 3.2) which implements AI_Flipflop. 

I lie primary motivation for a coupled implementation of an extension is to allow 
the extension implementation to have direct access to the data representation of 
a specific implementation of the component being extended. Thus, as with direct 
implementations, new operations may be implemented in terms of a specific data 
representation. For example, the Set operation defined in CI_FFWSet.2 uses the 
Integer representation of type Flipflop defined in CI.Flipflop_2. As we discuss in 
Chapter-1. different programming languages support a variety of different mechanisms 
that allow or disallow one component to have direct access to a type representation 

defined in another component. A coupled implementation of an extension is onlv 
possible when the implementation being extended is encoded in a way that allows 
another component to directly access the data representation of a type that it defines. 

CI_FFWSet_2 has direct access to CI.Flipflop_2's representation of Flipflop 
because CI_FFWSet_2 uses CI.Flipflop.2 and CI.Flipflop_2 defines its represen- 
tation of Flipflop in the interface section (as opposed to the auxiliary sec- 
tion). The "re-exports CI.Flipflop.2" statement includes the interface section 
of CI.Flipf lop_2 in the interface section of CI_FFWSet_2. This use of re-exports 



implementation CI_FFWSet_l 
implements  AI_FFWSet 

interface 

type Flipflop is represented by 
state : Boolean := False 

end representation 
exemplar ff_rep 
correspondence ff = ff_rep.state 

procedure Toggle (f : Flipflop) is 
begin 

f.state := not(f.state) 
end Toggle 

function Test (f : Flipflop) : Boolean is 
begin 

return f.state 
end Test 

procedure Set (f : Flipflop) is 
begin 

f.state := true 
end Set 

end CI FFWSet 1 

Figure 3.18: CI_FFWSet_l — A Direct Implementation 

at the implementation level is analogous to the use of re-exports by AI_FFWSet (Fig- 
ure 3.16) at the specification level. Whereas re-exporting an abstract component may 
be used for achieving specification-by-difference, re-exporting a concrete component 
is useful for achieving implementation-by-difference. Implementation-by-difference is 
one way to support reuse of existing implementation code and is a primary use of 
inheritance. 

Figure 3.20 shows CT_FFWSet_3, a concrete template that implements AI_FFWSet. 
That is, every concrete instance described by instantiating CT_FFWSet_3 implements 
AI_FFWSet. CT_FFWSet_3 is a layered implementation of AI_FFWSet. A layered im- 
plementation of an extension has a deferred dependency on an implementation of 
the specification being extended. That is, the extension implementation needs an 
implementation of the specification being extended. In this example, CT_FFWSet_3 
has a deferred dependency on an implementation of AI_Flipf lop. 
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implementation CI_FFWSct_2 
implements  AI_FFWSct 

context 
uses CI_Flipflop_2 

interface 

re-exports  CI_Flipflop_2 

procedure   Set    (f   :   Flipflop)   is 
begin 

f . state   :=   1 
end  Set 

end   CI   FFV.'Sct   2 

Figure 3.19: CI_FFWSet_2       A Coupled Implementation 

Like ;i coiiplcfl implementation of mi extension, an instantiation of a layered im- 

plementation reuses a specific implementation of the specification being extended. 

However, since a layered implementation may he instantiated with anij concrete in- 

stance that implements the specification being extended, it only has access to the 

interface defined by the specification it needs. Thus a layered implementation does 

not have direct access to the concrete representation of any types defined in tin1 

component being extended. Operations defined in a layered implementation of an ex- 

tension must be encoded in terms of "layered" on top of operations provided by 

the component being extended. Note that we have already seen examples of layering 

used to implement one abstraction in terms of another: CT_Threeway_l (Figure 3.8) 
and CT_Stack„l (Figure 3.11). 

lor CT_FFWSet_3. shown in Figure 3.20. the interface section must be defined 

in terms of the abstract interface1 provided by AI_Flipflop. Thus the operation 

Set is implemented in terms of the operations Toggle and Test, as specified bv 

AI.Flipf lop. rather than in tennis of a specific data representation. The "re-exports 

CI_Flipflop" statement includes tin1 interface section of the concrete instance1 

userl to instantiate1 CT_FFWSet_3 as part of the interface described by an instanti- 

ation of CT_FFWSet_3. Thus the concrete instance described by an instantiation of 

CT_FFWSet_3 provides everything in the interface of the1 concrete instance which serves 

at the actual parameter for CI.Flipflop. plus an implementation of the operation 

Set. Since a concrete* instance« that implements AI_Flipflop may implement more 

behavior than that specified by AI_Flipflop. an instantiation of CT_FFWSet_3 may 



implementation CT_FFWSet_3 
implements  AI_FFWSet 

context 
uses  AI_Flipflop 
needs CI_Flipflop implementing AI_Flipflop 

interface 

re-exports CI_Flipflop 

procedure Set (f : Flipflop) is 
begin 

if not(Test(f)) then 
Toggle(f) 

end if 
end Set 

end CT FFWSet_3- 

Figure 3.20: CT_FFWSet_3 — A Layered Implementation 

correspondingly implement more behavior than that specified by AI_FFWSet. Re- 
gardless of how CT_FFWSet_3 is instantiated, however, its contents may only refer to 
types and operations as specified in AI_Flipf lop (and, of course, built-in types and 
operations). 

Figure 3.21 shows the code for three instantiations demonstrating how a lay- 
ered implementation of an extension may be instantiated and the resulting con- 
crete instance further extended. The first instantiation defines the concrete instance 
CI_FFBase which describes the behavior specified by AI_Flipflop (the type Flipflop 
and operations Toggle and Test) as implemented by CI_Flipf lop_2. The second 
instantiation defines the concrete instance CI_FFWSet which describes the behavior 
specified by AI_FFWSet as implemented by CT_FFWSet_3 instantiated with CI-FFBase. 
Thus, CI_FFWSet provides implementations of Toggle and Test as described by 
CI_Flipf lop_2 and an implementation of Set realized by calls to those implementa- 
tions of Toggle and Test. 

The third instantiation defines the concrete instance CI_FFWSetReset using the 
specification AI_FFWReset and the implementation CT_FFWReset_3. AI_FFWReset ex- 
tends AI_Flipf lop with the operation Reset in the same way as AI_FFWSet does with 
Set. CT_FFWReset_3 implements AI_FFWReset in the same manner CI_FFWSet_l im- 
plements AI_FFWSet. (The code for AI_FFWReset and CT_FFWReset_3 is not shown.) 
CIJFFWSetReset describes the behavior specified by the union of AI_FFWSet and 
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implementation  CI_FFBar,c 
implements  AI_Flipflop 
by  CI_Flipflop„2 

implementation  CI_FFWSct 
implements AJ_FFWSct 
by  CT_FFWSct_3   with 

(CI_Flipflop   =>   CI_FFBaso) 

implementation CI_FFWSctRcsct 
implements   AT_FFWSct,   AI_FFWRcset 
by  CT_FFWRcsct_3   with 

(CI_Fiipflop   =>   CI_FFWSct) 

figure 3.21: Instantiation of Layered Extension Iinplementati ons 

AI.FFWReset as implemented by CT_FFWReset„3 instantiated with CI_FFWSet. the re- 

sult of the second instantiation. Tims. CI.FFWSetReset provides the concrete type 

Flipflop and operations Toggle. Test. Set. and Reset. 

Note that the direct and coupled implementations of AI.FFWSet could he instan- 

tiated in much the same way as the first instantiation shown in Figure 3.21. In both 

'•"M'> "implements" would he followed with "AI.FFWSet". For the direct implemen- 

tation, -by" would he followed by "CI_FFWSet_l". For the coupled implementation, 
-by" would be followed by  "CI_FFWSet„2". 

Fii:ure 3.22 is a C'C'I) depicting the three different implementations of AI.FFWSet 

as well two implementations of AI.Flipf lop and the relationships among these com- 

ponents. CI.FFWSet_l has no dependencies on other components (except for the 

built-in component CI_Boolean_l which we do not show). Thus modifications to other 

components cannot affect the behavior described by CI.FFWSet.l. If AI_FFWSet or 

AI.Flipflop were modified, then the correctness of the claim that CI.FFWSet.1 im- 

plements AI_FFWSet (and implicitly AI.Flipf lop) might change, but not the behav- 

ior implemented by CI.FFWSet.l. The uses relationship shown between CI_FFWSet_2 

and CI_Flipflop_2 depicts the fixed dependency of CI_FFWSet_2 on CI_Flipflop_2. 

This indicates that a modification to CI_Flipflop_2 may alter the behavior de- 

scribed by CI.FFWSet„2. The needs rclationshij) shown between CT_FFWSet_3 and 

AI.Flipf lop depicts the deferred dependency of CT_FFWSet_3 on AI.Flipf lop. That 

is. CT.FFWSet_3 needs an implementation of AI.Flipf lop. A change to the specifi- 

cation AI.Flipflop could affect the behavior described by CT.Flipflop_3. However, 

chamies to any implementations of AI.Flipflop cannot alter the behavior described 

bv CT_FFWSet_3. 



CT FFWSet 3 

Figure 3.22: Three Ways To Implement An Extension 

We now address the relative advantages and disadvantages of each of the three 
approaches to implementing an extension. The direct approach, exemplified by 
CI_FFWSet_l in Figure 3.18, is generally the least attractive of the three alternatives 
since it requires implementing the component being extended, in addition to the ex- 
tension, from scratch. Both the coupled and layered approaches have the advantage 
of reusing existing implementation code. The principal advantage of the direct ap- 
proach is that the code implementing the extension operations can have direct access 
to data representations which cannot be accessed directly using the layered approach 
and which may not be accessible at all to other components (in which case the coupled 
approach cannot be used). With direct access to the representation, it may be pos- 
sible to implement some extension operations much more efficiently than is possible 
with layering. While there is unlikely to be a performance advantage using a direct 
implementation in the case of CI_FFWSet_l, we present an example in Section 3.5.3 
where the direct approach does provide a significant performance improvement over 
the layered approach. 

The coupled approach, exemplified by CI_FFWSet_2 in Figure 3.19, offers the prin- 
cipal advantage of the direct approach, direct access of extension operations to data 
representations, and one of the main advantages of the layered approach, reuse of 
existing implementation code. Thus in some cases, a coupled implementation may be 
significantly more efficient than a layered alternative and less costly to develop than a 
direct implementation. A disadvantage of the coupled approach is that it typically re- 
quires "privileged" access to an existing implementation component in order to break 
encapsulation and gain direct access to data representations of types defined within 
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the implementation being extended. We discuss this issue more in Chapter T In a 

software components industry in which implementation components are distributed 

in "Mack box" object-code format, coupled implementations of extensions are not an 

option except for organizations which have the source1 code of the implementation 

beim; extended. Finally, justifying that a coupled implementation correctly imple- 

ments an extension specification may require significant effort which is not required 

when the layered approach is used. Edwards discusses the subtleties of this issue in 

terms of what he calls "representation inheritance", a form of extension by coupled 
implementation [EdwDfe. 

The layered approach, exemplified by CT_FFWSet_3 in Figure 3.20. offers significant 

advantages over the direct and coupled approaches with relatively minor drawbacks. 

As with the coupled approach, the layered approach reuses the code of an existing 

implementation of the specification being extended. However, the layered approach 

doe- not require privileged access to the implementation being extended since it views 

the implementation in terms of an abstract interface1. A major benefit of tin- layered 

extension implementation is that it can be used to extend miy implementation of the 

specification being extended, not just a single implementation as is the case with the 

coupled approach. This makes it possible to "chain" together multiple extensions 

a< shown in I-igure 3.21. Layering also insulates an extension from modifications to 

implementations of the specification being extended. 

1 lie extension implementation task should be conceptually easier with tin- lay- 

ered approach since a software- engineer implementing layered extension operations 

only needs to understand tin- behavioral specification of the implementation being 

extended and not any of its implementation details, such as data representations. An 

empirical study by Zweben. et. ah. provides evidence that the layering approach can 

lead to higher programmer productivity and lower defect rates [ZE\YHfl.">]. As men- 

tioned above, justifying that an implementation extension is correct with respect to 

the specification it implements is typically easier for layered implementations than for 

coupled implementations. The reason for this is that operations implemented by lay- 

ering: cannot violate1 representation invariants of the implementation being extended 

as long as the underlying operations are' correctly implemented and called only when 
their precemditions are satisfieel. 

As noted above1, the primary elisaelvantage of layered implementations is that 

they may be' less efficient than comparable' direct or coupled implementations. The1 

ineffu-iency arises from the1 aelelitional operation calling overhead reejuired to invoke 

operations of the' implementation being e'xte'iided and. in some1 cases, arises from a 

significantly increased algorithmic- complexity resulting from the limitations of in- 

direct data manipulation. For example, the implementations of Set described by 

CI.FFWSet.1 (Figure' 3.IS) and CI_FFWSet_2 (Figure 3.19) are likely te» be more effi- 

cient than the1 layered implementation of Set described by CIJFFWSet (Figure 3.21). 



but only by a constant factor. In some cases, the additional operation calling over- 
head resulting from layering may be reduced by using optimization techniques such 
as in-lining of operations. Another disadvantage inherent to the layering approach is 
that clients of layered extensions must instantiate the concrete template defining a 
layered implementation in order to generate a useful concrete instance. This problem 
may be mitigated by "pre-instantiating" components using a technique called partial 
instantiation. We discuss partial instantiation in Chapter 5. 

The layered approach to implementing extension specifications is the primary 
approach used by the RESOLVE discipline [SW94, p. 41]. In Section 5.6 we present 
examples of how layered extensions are encoded in RESOLVE/Ada95. 

3.5.3    Extension Of Template Components 

On page 64 we listed three distinct relationships which apply to the overloaded 
term extends. The extends relationship between two abstract instances was exem- 
plified by the relationship AI_FFWSet extends AIJFlipf lop. The second relationship, 
an abstract template that extends an abstract instance, could be used to express a 
deferred dependency on a component used by an extension, but not by the abstract 
instance that the extension extends. We include this second definition of extends 
for completeness and do not provide an example. In this section we discuss the third 
extends relationship between two abstract templates. 

Figure 3.23 shows the abstract template AT_SWRev that extends AT_Stack (shown 
in Figure 3.10) in accordance with the third, template-to-template, definition of ex- 
tends. Since AT_Stack is an abstract template, AT_SWRev must also be an abstract 
template. This is the only way that all of the interface defined by AT_Stack can 
be included in the interface defined by AT_SWRev as necessary for justifying the 
extends relationship. Like AT_Stack, AT_SWRev needs a concrete instance that 
implements AI_AnyType to provide a definition of the type of element contained 
within the stack. The type corresponding to AnyType in the actual parameter bound 
to CI_StackWRItemType14 determines the type of elements contained in the stack. 
AT_SWRev uses AT_Stack in order to define its interface in terms of the interface 
specified by AT_Stack. However, since AT_Stack is an abstract template, its interface 
section cannot be re-exported directly as was the case with AI_FFWSet re-exporting 
the interface of AI_Flipflop (Figure 3.16). 

Since AT_Stack is a template, the meaning of its interface section depends on 
the binding of its formal parameter CI_StackItemType. Thus, in order for the re- 
exported interface of AT_Stack to have any meaning, CI_StackItemType must be 
bound to some concrete instance.   Furthermore, for an instantiation of AT_SWRev 

14Note that any formal parameter name would do where we use CI_StackWRItemType. Normally, 
we would use the same formal parameter name here as in AT_Stack. However, in this example we 
use different formal parameter names in order to make the code easier to understand. 
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specification />.T_Sl\'Rcv 
extends A7_St_ack 

context 
uses AT_S'cack 
uses AI_Ar.yTypc 
needs CI_SLackWRItcmTypc implementing AI_AnyType 

interface 

re-exports AT_Stack with 
(CI_St_ackItcmTypo =>   CI_StackWRItemTypo) 

procedure Reverse (s : Stack) 
ensures  s = REVERSE ((is) 

end A7_SWRcv 

Figure 3.23: An Extension of An Abstract Template 

to extend an instantiation of AT.Stack. both specifications clearly need to specify 

stack- with the same type of elements. The re-exports clause in AT_SWRev addresses 

both of these issues by describing the re-exported interface as AT_Stack instantiated 

with CI_StackWRItemType serving as the actual parameter for CI_StackItemType. 

That is. the interface described by an instance of AT_SWRev includes the interface 

described by an instance of AT_Stack instantiated with the same concrete instance 
used to instantiate AT^SWRev. 

Recall that the definition of extends between two abstract templates requires 

that for ninj instantiation of AT_Stack. say Al\. there exists some instantiation of 

AT.SWRev. say AI,, such that .1/. extends .1/, (by the definition of extends be- 

tween two abstract instances). We claim that AT_SWRev extends AT.Stack for the 

following reason. Assume that AT_Stack is instantiated with the concrete instance 

CI serving as the actual parameter corresponding to AT_Stack"s formal parameter 

CI_StackItemType. Then any instantiation of AT_SWRev with CI as the actual param- 

eter corresponding to AT_SWRev's formal parameter CI_StackWRItemType extends 

the instantiation of AT_Stack with CI (by the definition of extends between two ab- 

stract instances). That is. if ATStack and AT.SWRev are instantiated with the same 

concrete instance, then the instantiation of AT_SWRev extends the instantiation of 

AT.Stack. 1 his implies that any concrete instance that implements an instantiation 

of AT.SWRev abo implements the corresponding instantiation of AT.Stack. We will 

look at an example of how these components may be instantiated after looking at a 

component that implements AT.SWRev. 



implementation CT_SWRev_l 
implements  AT_SWRev 

context 
uses  AI_AnyType 
uses  AT_Stack 
uses  AT_Queue 
needs CI_StackWRItemType implementing AI_AnyType 
needs CI_Stack implementing AT_Stack with 

(CI_StackItemType => CI_StackWRItemType) 
needs CI_Queue implementing AT_Queue with 

(CI_QueueItemType => CI_StackWRItemType) 

interface 

re-exports CI_Stack 

procedure Reverse (s : Stack) 
q : Queue 
x : AnyType 

begin 
for i in 1 .. Length(s) loop 

Pop(s, x) 
Enqueue(g, x) 

end loop 
for i in 1 .. Length(g) loop 

Degueue(g, x) 
Push(s, x) 

end loop 
end Reverse 

end CT SWRev 1 

Figure 3.24: A Layered Implementation of AT_SWRev 

Figure 3.24 shows the concrete template CT_SWRev_l, which is a layered imple- 
mentation of AT_SWRev. This implementation reverses a stack by popping each 
element off the stack and enqueueing it into a (first-in-first-out) queue followed 
by dequeueing each element from the queue and pushing it back onto the stack. 
CT_SWRev_l uses AI_AnyType, AI_Stack, AI_Queue, and implicitly CI_Integer_l and 
CI_Boolean_l. CT_SWRev_l needs an implementation of AI_AnyType, and implemen- 
tations of AT_Stack and AT_Queue, both instantiated with the same concrete instance 
serving as the implementation of AIJVnyType. 
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AI_AnyType 

needs 

extends/ 
AT_Stack [^- _ JAT SWRevI I needs AT Queue 

CT_SWRev 1 

Figure 3.2."): Behavioral Relationships of CT_SWRev„l 

I-mm a component maintenance perspective, we largely can ignore CT_SWRev_l*s 
dependencies on AIJVnyType. CI_Boolean_l. and CI_Integer_ln since these com- 
ponents are fixed by the language and will not change. Tims CT_SWRev_l's needs 
relationships with AT_Stack and AT_Queue summarize the critical design dependen- 
cies for this component. 

figure 12Ö is a ('CD that shows CT„SWRev_l and the component relationships 
pertinent to understanding the behavior of and use of CT_SWRev_l. The thick arrows 
(needs and extends with uses) depict coupling or dependency relationships. The 
thin arrow (implements) depicts a purely behavioral relationship. The implementa- 
tion behavior encoded by CT_SWRev^l depends on the behavior specified by AT_Stack. 
AT.Queue. and AI.AnyType. While AT.SWRev may be used as a specification of the 
behavior of CT_SWRev_l. the behavior implemented by CT_SWRev_l in no way depends 

ujmn AT_SWRev. Thus only changes to AT_Stack and AT_Queue could alter the behav- 
ior described by CT_SWRev_l. Xote that Figure .120 does not encode the requirement 
that CT.SWRev_l. AT^Stack. and AT_Queue must all be instantiated with the same im- 
plementation of AI.AnyType. The component instantiation diagrams (CID's) shown 
in Chapter ■ > convey more detailed iid'ormation such as this. 

figure 3.20 shows the code describing an instantiation of CT_SWRev_l. The con- 
crete instance CI„FFSWRev describes an implementation of a stack of flip-flops pro- 
viding a stack Reverse operation. CI_FFSWRev implements AT_SWRev instanti- 
ated with CI_Flipflop^3.    Hecall  that  the code describing the concrete instances 

'CT.SV,'Rev'> fixed dependency on COnteger.l could he significant to a niaintainer since the 
latter fit .fine, an implementation-dependent maximum Integer value. However, an •'unbounded" 
.-tar); a- specified by AT_Stack would not he appropriate for applications in which the stack's length 
could potentially grow larger than the maximum Integer value. 



implementation CI_FFSWRev 
implements AT_SWRev with 

(CI_StackWRItemType => CI_Flipflop_3) . 
by CT_SWRev_l with 

(CI_StackWRItemType => CI_Flipflop_3, 
CI_Stack => CI_Flipflop_Stack, 
CI_List =>  CI_FLipflop_List) 

Figure 3.26: Instantiation of CT_SWRev_l 

CI_Flipflop_Stack and CI_Flipflop_List was shown in Figure 3.13. The imple- 
ments relationship between CI_FFSWRev and AT_SWRev can be justified here only 
because all of the template components involved have been instantiated with the 
same concrete instance, CI_Flipf lop_3, as the stack element type. 

Since CT_SWRev_l is a layered implementation of AT_SWRev, it may be used to 
extend any component that implements AT-Stack but does not depend on any 
other implementation components. Despite these advantages, the layered approach 
precludes an efficient constant-time Reverse operation in this case. The Reverse 
operation encoded in AT_SWRev executes in linear time with respect to the length of 
the stack being reversed. A stack Reverse operation layered on top of the interface 
provided by AT_Stack can do no better than linear time. A client application that 
needs to reverse stacks frequently, might justify creating a direct implementation of 
AT_SWRev with a Reverse operation that runs in constant time. 

Figure 3.27 shows the concrete template CT_SWRev_2 which we claim implements 
AT_SWRev. This is a direct implementation of AT_SWRev since it defines its own 
stack representation and implementations for Push, Pop, and Length in addition 
to Reverse. CT_SWRev_2 needs an implementation of AT_Two_Way_List, a specifica- 
tion similar to AT_One_Way_List except that it includes a Retreat which, along with 
Advance, supports traversal of the list in both directions. A two-way list has the 
same model as a one-way list, a pair of strings. The representation of type Stack has 
two components: a (two-way) List labeled holder and a Boolean labeled left-top. 
lef t_top is used to keep track of which end of the list represent the top of the stack. 
When the value of left-top is True, the portion of the list corresponding to the right 
string represents the stack with the stack top being the left-most element in the right 
string. When the value of left-top is False, the portion of the list corresponding to 
the left string represents the stack with the stack top being the right-most element 
in the left string. Using this representation, the Reverse operation is implemented 
by simply changing which end of the list currently represents the top of the stack. 

Achieving a constant time reverse operation does require slightly more complex 
and slower implementations of Push, Pop, and Length since each of these operations 
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implementation CT_SWRcv_2 
implements  AT_SWRcv 

context 
uses  AI_Ar.yType 
uses  A7_Tv.'o_Way_List 
needs CI_StackItcrrType implementing AI_AnyTypc 
needs CI_List implementing AT_Two_Way_List with 

(CI_Lis'cILcrr;Typc => CI_AnyTypc) 
interface 

type Stack is represented by 
holder   : List 
lcft_top : Boolean := True 

end representation 
exemplar s_rep 
convention if s_rcp.left_top then 

s_rep.holder.left  = EMPTY_STRING 
else 

s_rep.holder.right = EMPTY_STRING 
correspondence if s_rcp.left_top then 

s = REVERSE(s_rcp.holder.right) 
else 

s = s_rcp.holder.left 

procedure Push (s : Stack, x : AnyType) 
begin 

Add_Right(s.ho]der, x) 
if not(s.left_top) then Advance(s.holder) end if 

end Push 

procedure Pop (s : Stack, x : AnyType) 
begin 

if not(s.left_top) then Retreat(s.holder) end if 
Rc~ovc_R:ght(s.holder , x) 

end Pop 

function Length (s : Stack) : Integer 
begin 

if s.lcft_top then return (Right_Lcngth(s.holder) 
else return (Lef t__Lcngth (s . holder) ) end if 

end Length 

procedure   Reverse   (s   :   Stack) 
begin 

if   s.lcft_top  then  Movo_To_Finish(s.holder) 
else  Kovc_To_Start(s.holder)   end  if 
s.lcft_top   :=   not(s.left_top) 

end  Reverse 
end  C7   SV.-Rcv  2 

Figure 3.2/: A Direct Implementation of AT_SWRev 
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must test for which end of the list represents the top of the stack. An implemen- 
tation of a two-way list also is likely to require more memory than a one-way list 
implementation. Nevertheless, if a fast reverse operation is important to the client 
application, then the direct implementation approach is justified in this case. Note 
that a coupled implementation is unlikely to be of use in this situation since the 
implementations Push, Pop, and Length, as well as the data representation, must be 
specifically designed for a constant-time reverse operation. 

3.6    Behavioral Substitutability of Components 

With the relationships we have defined, it is now very simple to characterize when 
one software component is substitutable for another. Since an integrated system 
consists of all concrete instances (e.g., Figure 3.14(a)), component-level system main- 
tenance involves replacing one concrete instance with another. However, a maintainer 
cannot replace one concrete instance with another without knowing the behavioral re- 
quirements the system has for the component being replaced. Two different concrete 
instances may be substitutable with respect to one specification, but not with respect 
to another. Therefore, the substitutability relationship is a ternary relationship in- 
volving two concrete instances and an abstract instance identifying the minimum 
behavioral requirements of the system for both concrete components. 

For concrete instances C\ and C2, and abstract instance A, we define the behav- 
ioral substitutability relationship as follows: 

is_sub(C2,Ci, A) = C\ implements A A C2 implements A (3.1) 

This relationship may be read as "C2 is substitutable for C\ with respect to A". 
Although the behavior implemented by C\ and C2 may differ in a variety of ways, 
both components provide the behavior specified by A (assuming the implements 
relationships are justified). For a concrete template that needs A, either C\ or C2 

will satisfy the requirement. 
As an example, consider again Figure 3.22 on page 73. Given the relationships 

shown in this figure, CI_Flipf lop_l is substitutable for CI_Flipf lop_2 with respect to 
AI_Flipf lop and conversely, CI_Flipflop_2 is substitutable for CI_Flipf lop_l with 
respect to AI_Flipflop. Any two of■CI_FFWSet_l, CI_FFWSet_2, and CI_FFWSet_3, 
are substitutable with respect to AIJFFWSet. Furthermore, any two of these three 
extension implementations are substitutable with respect to AI_Flipf lop since each 
implements AI_Flipf lop. Finally, each of the three extension implementations 
are substitutable for either of CI_Flipflop_l or CI_Flipflop_2 with respect to 
AI_Flipflop. However, CI_Flipflop_l is not substitutable for CI_FFWSet_l with 
respect to AIJFFWSet since CI_Flipf lop_l does not implement AIJFFWSet. 
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3.7    Chapter Summary 

In this chapter we built on the more formal relations developed in Chapter 2 to de- 

fine a useful set of component relationships. Section 3.1 introduced a notation based 

on RhSOIAK and Ada for encoding specification and implementation components. 

The uses relationship, defined in Section 3.2. records any form of fixed dependency 

of one component upon another. Any type of component (abstract or concrete, tem- 

plate or instance) may use any other type of component. If component C\ uses 

component ('■,. then C, cither refers directly or indirectly to C> (possibly implicitly) 

for the purpose of describing (",'s behavior in terms of the behavior described by C>. 

Since the behavior described by a component will, in general, be influenced by any 

other component that it uses, clearly documenting this relationship is important for 

software maintenance'. 

The implements relationship, defined in Section 3.3. records the conformance of 

an implementation component to a specification component. Recording this relation- 

ship is useful for establishing substitutability properties, for stating its requirements 

for verification of correctness, and for documenting its "advertised" behavior. The 

imps relation, in terms of which implements is defined, is a relation defined over 

the sets of concrete instances and abstract instances. We have defined implements. 

however, as three related, but distinct, relationships. The three signatures of the 

implements relationships, listed in the left column of Table 3.1. correspond to: a 

concrete instance that implements an abstract instance, a concrete template that 

implements an abstract instance, and a concrete template that implements an 

abstract  template, respect ivelv. 

The extends relationship, defined in Section 3.5. records the conformance of one 

abstract component to another. Recording the extends relationship is useful for 

establishing substitutability properties and for specifying the behavior of one compo- 

nent in terms of another component. Like implements, the name extends applies 

to three related, but distinct, relationships. The three signatures of the extends 

relationships, listed in the left column of Table 3.1. correspond to: an abstract in- 

stance that extends another abstract instance, an abstract template that extends 

an abstract instance, and an abstract template that extends another abstract tem- 

plate, respectively. In Section 3.Ö.2. we described the direct, coupled, and layered 

approaches to implementing an extension component and provided examples of each 

approach. 

The needs relationship, defined in Section 3.-1. records a behavioral requirement 

of a component as a deferred or polymorphic dependency, bsing the needs rela- 

tionship to express requirements, prevents unnecessarily coupling implementations 

and lays the foundation for improvements through component substitution. I'sed in 
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implements concrete component C implements abstract component A iff C 
provides an implementation of all behavior specified by A 

CIxAI imps(C, A) holds 
CTxAI for any instantiation C of C, imps(C", A) holds 
CTxAT for any instantiation C of C, there exists some instantiation A' 

of A, such that imps(C", A') holds. 

extends abstract component A2 extends abstract component A\ iff every 
concrete component that implements A2 also implements Ai 

AI x AI exts(.42,^i) holds 
ATxAI for any instantiation A'2 of A2, exts(^42, ^4i) holds 
ATxAT for any instantiation A'2 of A2, there exists 

some instantiation A\ of Ax such that ex.ts(A'2, A'x) holds 

uses component C\ uses component C2 iff the meaning of C\ depends 
either directly or indirectly on the meaning of C2 

needs concrete template C needs abstract instance A iff C uses A and 
for all instantiations of C, C"s references to elements in A are 
replaced by references to the corresponding elements in some 
concrete instance that implements A 

is_sub concrete instance C2 is behaviorally substitutable for C\ with 
respect to abstract instance A (is_sub(C2, C\,A)) iff 
C\ implements A and C2 implements A 

Table 3.1: Summary of Component Relationships 
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conjunction with the implements relationship, the needs relationship isolates im- 
plementation components from each other prior to system integration and encourages 
the development of modularlv verifiable components. 

Finally, in Section 3.fi. we defined the is_snb relationships which holds when 
two concrete instances are substitutable for one another with respect to a common 
specification an abstract instance. Designing, implementing, and documenting 
software components using the implements, extends, needs, and when necessary, 
the uses relationships, is an important step toward component-level maintenance of 
software svstems. 
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CHAPTER 4 

PROGRAMMING LANGUAGE SUPPORT FOR 
BEHAVIORAL RELATIONSHIPS 

In this chapter we examine how the component relationships described in Chap- 
ter 3 may be encoded in modern programming languages. We primarily focus on 
programming languages such as Ada and C++ which have an established user base 
and are generally regarded as useful for constructing large component-based software 
systems. Complex programming languages such as these provide many mechanisms 
which make possible a variety of approaches to encoding software components. The 
language mechanisms of primary interest are those supporting techniques for achiev- 
ing modularity, information hiding, polymorphism, and extendibility. These four as- 
pects of software engineering roughly correspond to the benefits associated with use 
of the uses, implements, needs, and extends relationships, respectively. 

Section 4.1 begins this chapter with a review of the goals of an approaches to 
modularity, information hiding, polymorphism, and extendibility. The following sec- 
tions discuss how programming language mechanisms may be used to encode the 
uses, implements, extends and needs relationships. Section 4.6 summarizes this 
chapter. 

4.1    Language Support for Component-Based Software Engi- 
neering 

Many authors have written about how programming languages can provide sup- 
port for building reusable software components. Most detailed discussions of lan- 
guage mechanisms supporting component-based software focus on the features of a 
single language such as Ada [Boo87], C++ [CE95], Eiffel [Mey94] and RESOLVE 
[Har90]. Some books on object-oriented programming languages (OOPL's) com- 
pare how the mechanisms of different OOPL's support software reuse (for example, 
[Cox86, Bud91]). Edwards provides a detailed analysis of how well four languages 
— OBJ, RESOLVE, Eiffel, and Standard ML — support component-based software 
engineering [Edw95, pp.   165-183].  There is a wide variety of opinions about what 
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combination of specific language mechanisms best supports component-based software 

engineering. Nevertheless, there is general agreement that language mechanisms that 

support modularity, information hiding, polymorphism, and extendibility are partic- 
ularly useful. 

4.1.1     Modularity 

Modularity in the design and implementation of software inyolves partitioning a 

software system into constituent "parts" modules. The benefits of modularity are 

well established. Modular design is a primary tool for managing complexity using ab- 

straction. Decomposing a large system into smaller, conceptually simpler units makes 

a system specification rasier to understand and implement. Compared to a monolithic 

implementation, a modular implementation should be easier to understand, test, de- 

bug, and maintain. Furthermore, if modules are well-designed, the modular approach 
supports soft wan1 reuse. 

Component-based software engineering assumes that complex systems will be con- 

structed from software components modules. Programming languages supporting 

this approach must therefore provide some unit of modularity for defining compo- 

nents. 'I lie top-down or "structured" approach to analysis and design of software 

systems became popular in the ]07()"s [SMC7-1]. This approach advocates funrfimwl 

ilicoriijmsitinji of systems. Functional decomposition focuses on process abstraction 

and leads to operations as the primary unit of modularity. With this approach, indi- 

vidual operations serve as components and component libraries primarily consist of 
collections of subroutines. 

Object-oriented analysis and design, which began to gain popularity in the lflSO's. 

takes a different approach to modularity which leads to different kinds of components 

Far. 2. MeyST. Boo?) f. The object-oriented approach focuses on data abstraction 

and decomposition of systems based on data structures rather than  functionalitv. 

I lie primary rationale for the object-oriented approach is based on observation of 

how most birge software systems change over time. The data structures of systems, 

when viewed abstractly, tend to be fairly stable over time. System functionalitv. 

however, tends to change to a much greater extent. The object-oriented approach 

views a system component primarily as an abstract data type (AI)T) which specifies 

a type, operations on that type, and local state for representing the value of objects of 

the type. \\ itli this approach, components may contain data structures and multiple 
operations. 

Many modern programming languages provide mechanisms for encoding compo- 

nents that encapsulate both data structures and operations. In OOPL's such as 

Simula. ('—-. Fiffel. and Java the primary unit of modularity is the class. A class 

serves double duty as a mechanism for both encapsulation and definition of user- 

defined types.   C-f-- and Eiffel support  parameterized classes (templates) which are 
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very useful for encoding the relationships described in Chapter 3. In other languages 
such as Ada, Modula-2, and ML (all strongly typed languages) the mechanisms for 
defining modules and types are distinct. An Ada package, a Modula-2 module, and 
an ML module may declare multiple types accessible by other components in addition 
to operations and local data structures16. Both Ada and ML provide strong support 
for parameterized components with generic packages and functors, respectively. 

4.1.2    Information Hiding 

Information hiding, also called encapsulation, is a technique for achieving ab- 
straction whereby some features of a component are made inaccessible to (they are 
"hidden" from) other components. As with modularity, the benefits of information 
hiding are well known and most programming languages provide mechanisms sup- 
porting some form of information hiding. Information hiding may be used to restrict 
and simplify the way in which clients may interact with implementation components. 
By preventing client access to implementation details such as data representations, 
implementations may be changed without changing the "non-hidden" interface of 
a component. This reduces coupling between implementation components, supports 
making localized changes without global affects, and results in software systems which 
are easier to maintain. 

In addition to simplifying a client's view of a component, information hiding used 
in conjunction with behavioral specifications may support re-conceptualization of a 
software component. That is, the "cover story" provided by a behavioral interface 
description (a specification component) might be quite different from the description 
provided by implementations of the specification. As a simple example, consider 
AI_Flipflop (Figure 3.1) used as the specification of CI_Flipflop_2 (Figure 3.2). 
AI_Flipf lop not only hides the INTEGER model representation of CI_Flipf lop_2, 
it portrays — we might even say "lies about" — the implementation as having a 
BOOLEAN model. In this case the BOOLEAN model serves as a simpler, more abstract 
cover story for the actual representation of CI_Flipf lop_2. One of the goals in the 
design of behavioral interface specifications is to convey to clients a useful mental 
model of the behavior exhibited by conforming implementations [Edw95, pp. 7-12]. 
In order to achieve simplicity and allow for a variety of differing implementations, the 
mental model described by a specification component may be significantly different 
from the model of any particular conforming implementation. 

Programming languages provide a wide variety of tools for achieving information 
hiding at the component level. A common approach is to declare certain features of 
a component as "public" and others as "private".  Types, operations, and variables 

16Although Ada95 packages may export multiple types, only a single extensible "tagged" type 
may be defined within a package and extended using inheritance. With this limitation, the object- 
oriented model supported by Ada95 is similar to that of C++. 
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winch air public may he directly referenced by (are visible to) client code. Features 

declared as private are only visible within the component in which they are defined 

thus arhievinu information hiding. In OOPL's. the data representation for the tvpe 

defined by a class is typically represented by instance variables of the class. If the 

instance variables are declared as private, then the data representation of the class 

is hidden.  C classes may define operations and variables with the three visibility 

modifiers: public, private, and protected. A variable or operation declared as 

private only is visible within the defining class. A protected operation or vari- 

able only is visible- within the defining class and all sub-classes (classes linked by 

inheritance) of the defining class, .lava has these three visibility categories plus two 

additional ones1'. In Eiffel, all class features are private unless they are explicitly 

declared as "exported" in which case they are public. 

As noted above. Modula-2 modules. Ada packages, and ML modules may define 

and export multiple types unlike classes in most OOPL's. In these languages. ADT's 

correspond to exported types with hidden data representations. Modula-2 modules 

and Ada packages consist of separate header and body parts, typically placed in 

separate files. The representation of a Modula-2 opaipic ti/pc is hidden bv declaring 

its visible representation as a pointer in the definition module, the header part, and 

declaring the referenced data structure in the private implementation moduli, the 

body part. An Ada private fi/pr is declared twice in an Ada paekatje specification, the 

header part. A private type is first declared in the public section without providing 

a representation, and then in the private section with its representation. Although a 

client looking at an Ada package specification can "see" a private type's representa- 

tion, client code does not have visibility to any types, operations, or variables declared 

in the private section of a package specification. Types, operations, and variables de- 

clared and implemented in the packaije hodij. but not declared in the public section 

of the package specification are completely hidden from clients of the package. 

ML provides at least four different approaches to information hiding at the mod- 

ule level \ 1100. p. 103]. The approach of using ML signatures to hide information 

contained in ML structures corresponds very closely to using specification compo- 

nents to hide information contained in implementation components as shown in the 

example.- in Chapter 3 and modeled by AC'TI [KdwOo. Sjl.13.3], ML signatures arc 

modules that only may contain type names (with no representation), value names 

with their associated type signature (but no value), and various other specifications. 

In ML. functions are treated as values. A value name and type signature mav either 

be an ordinary variable and its data type or the name of an operation and its param- 

eter profile. A structure is a module that may contain type representations, values 

including function implementations, and various other elements including nested 

substructures.   'Jims a signature module corresponds to a specification component 

'.lava'- private protected is equivalent to protected in C+ + . Java's protected and default 
visibility take into consideration the .lava "packap." in which die classes are defined. 

SS 



(with no language support for behavioral specifications) and a structure module cor- 
responds to an implementation component. We discuss the relationship between ML 
signatures and structures further in Section 4.3. 

4.1.3    Polymorphism 

Polymorphism literally means "many forms". Within the context of programming 
languages, polymorphism refers to the situation in which a single name, such as a 
variable name, may be used to denote values of different types or objects of different 
classes. Cardelli and Wegner survey and classify a variety of techniques for achieving 
polymorphism [CW85]. They identify the two primary kinds of polymorphism as 
parametric polymorphism and inclusion polymorphism. Parametric polymorphism is 
achieved by using templates and inclusion polymorphism, also called subtype polymor- 
phism, is achieved by using inheritance and typically dynamic binding of operations. 
Note that the term "polymorphism" is frequently used specifically to refer to sub- 
type polymorphism with dynamic binding of operations, especially within the object- 
oriented community. As do Cardelli and Wegner, we use the term in the broader 
sense to include parametric polymorphism. 

Techniques for achieving polymorphism support the design and implementation 
of components which are less coupled to other components than would be possible 
without polymorphism. This can help in attaining system maintainability, compo- 
nent reusability, and component substitutability.' Budd nicely summarizes the role of 
polymorphism as follows. 

Polymorphism in programming languages permits the programmer to gen- 
erate high-level reusable components that can be tailored to fit different 
applications by changing their low level parts. [Bud91, p. 88] 

This characterization of polymorphism also describes the role of the needs re- 
lationship between a concrete template and an abstract component as discussed 
in Section 3.4. Consider the implementation CT_Threeway_l shown in Figure 3.8. 
CT_Threeway_l provides an example of parametric polymorphism. Since the repre- 
sentation of the concrete type Threeway is constructed from an implementation of 
AI_Flipf lop supplied as a parameter, Threeway may be considered as a polymorphic 
type describing many different implementations (forms). The different implementa- 
tions are all of the possible instantiations of CT_Threeway. The operations Advance 
and On defined by CT_Threeway_l may be considered as polymorphic operations which 
manipulate (flip-flop) objects of many different types. As we discuss in Section 4.5, 
it is also possible to encode the needs relationship using subtype polymorphism. 

By the generally accepted definition of an OOPL, all OOPL's include inheritance 
and dynamic binding and thus the mechanisms necessary for subtype polymorphism. 
Statically typed OOPL's such as C++, Ada (Ada95), Java, and Eiffel as well as dy- 
namic type checking OOPL's such as Smalltalk all support polymorphism in the form 
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of subtype polymorphism. Parametric polymorphism is supported in a variety of lan- 

guages. Parameterized components may he encoded using ML functors. Ada generic 

packages. C—~ templates, and Eiffel generic classes. Note that Ada. C+ + , and Eiffel 

(and several other, primarily research, language's) provide support for both subtype 

and parametric polymorphism. The mechanisms supporting these two forms of poly- 

morphism may be used in combination to achieve useful results. We provide examples 

of the combined use of parametric polymorphism and inheritance in Chapter 5. 

4.1.4    Extendibility 

Extendibility refers to how easy it is to extend the functional behavior of an 

existing component-based system and thus how easy it is to extend the behavior 

described by software components. In Section 2.1.1 we discussed the inevitable need 

for changes to software systems. Perfective maintenance, which addresses changes 

in functional requirements, accounts for the largest portion of all maintenance costs 

I.BSIWf. Since new functional requirements nearly always call for additional system 

functionality (as opposed to reduced system functionality), extendibility is a highlv 

valued characteristic of software systems. 

Any software for which the source code is available is ■•extendable" in the sense 

that the source code can be modified to add new functionality. However, the goal 

of designing and implementing extendable components is to be able to extend the 

functionality of existing components with minimal disruption to systems that use 

those components. When extending the functionality of an existing component or 

component-based system, we want to modify the code of existing components as little 

as possible. Minimizing changes to existing component code minimizes: introduction 

of hues and unexpected behavior, retosting and recertification. and possibly expensive 

system re-builds (e.g.. extensive recompilalion). 

Io some extent, there1 is a trade off between information hiding and extendibil- 

ity. Extending a component that makes its internal details accessible (public) may 

be easier and result in a more efficient implementation of the extended functionality. 

However, as discussed in Section 3.Ö.2. there is a price to pay for such weak encapsu- 

lation. A number of authors have discussed this trade-off in the context of OOPL's 

;SGD."). MW90. SnySO;. The layered approach to implementation extension described 

in Section 3.Ö.2 provides an example of how strong encapsulation may be maintained 

while still supporting extendibility. 

In general, language- mechanisms supporting modularity, information hiding, and 

polymorphism are also useful for supporting extendibility. The language mechanism 

most ass,,Hater] with extendibility is inheritance which is provided in one form or 

another by all OOPL's. Inheritance is a convenient mechanism for describing how 

one component differs from another. However, inheritance is used for many different 

purposes in addition to extension of components.   In presenting a taxonomy of the 
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uses of inheritance, Meyer describes 12 distinct "valid" uses for inheritance [Mey96]. 
Under the general category of model inheritance, Meyer includes subtype inheritance 
which does not involve inheritance of data representations or operation implementa- 
tions. Subtype inheritance is used to express and enforce a conformance relationship. 
We refer to this use of inheritance as specification inheritance. The most common 
use of inheritance involves inheritance of data representations and operation imple- 
mentations. This use of inheritance is often called subclassing. We refer to any use of 
inheritance that falls into this category as implementation inheritance. What Meyer 
calls "extension inheritance", a uses and subtyping relationship between implemen- 
tations, and "implementation inheritance", a uses relationship based on inheritance 
but not implying subtyping, both fall into this category. 

Many authors have written about the problems that can arise from using one 
programming language mechanism, inheritance, for several distinct purposes [Tai96, 
Cla95, Edw93, Coo90]. Several newer OOPL's address these problems by using dis- 
tinct language mechanisms for encoding (structural aspects of) specification inheri- 
tance and implementation inheritance. Java is the most widely used language that 
has different mechanisms for specification inheritance and implementation inheri- 
tance. We discuss these aspects of Java in Sections 4.3.4 and 4.4. Other new OOPL's 
that also use different language mechanisms for specification and implementation in- 
heritance include Theta, a language primarily based on CLU [LCD+94], Sather 1.0, 
a language based on Eiffel [SOM94], and Pizza, a superset of Java [OW97]. Note 
that unlike Java, Theta. Sather, and Pizza all support parametric polymorphism in 
addition to inclusion polymorphism. 

The hierarchical library structure introduced into Ada with the 1995 language 
revision provides a unique approach to component extension not found in other pro- 
gramming languages. In Ada, any library unit (a package, subprogram, or generic 
unit) may be extended by a child unit. The visibility of a child unit includes full 
visibility of its parent unit including the parent's private section. The presence of a 
child unit, however, does not affect the parent unit or any components which depend 
on the parent unit. Child and parent units may be compiled separately and adding 
a child unit does not require recompilation of the parent unit. The child unit mecha- 
nism is orthogonal to Ada's inheritance mechanism. However, as we demonstrate in 
Chapter 5, these two language mechanisms may be used in combination. 

4.2    Encoding The uses Relationship 

As discussed in Section 3.2, the uses relationship represents a fixed dependency 
between two software components. If component A" uses component Y, then X in 
some way depends on Y. The uses relationship provides no information on how Y 
is used by A^; but without access to component Y, the meaning of component X is 
incomplete. With some programming languages, the source or object code of Y must 
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1><- available in order to compile the source code of A'. Other languages, however, mav 

not require that the code of )' lie available to A" until system integration time (link 
time) or oven until runtime. 

Some programming; languages require explicit encoding of the uses relationship 

between components. The visibility rules of the [animate largely dictate what is 

required for one component to refer to elements defined by another component. In 

the examples in Chapter 3. a uses clause in context section directly encoded the uses 

relationship. In the case where A uses )'. we assumed, for simplicity, that all elements 

defined in the interface of )' could be referenced directly within A without name 

qualification (unless necessary to resolve overloading). In sonic languages there is a 

separate mechanism for allowing abbreviated reference to components and elements 
defined within other components. 

In some cases, a uses clause in the Chapter 3 examples conveys redundant in- 

formation that may be deduced from other parts of the component. For example, 

since the needs clause always entails a uses relationship we could have omitted all 

uses clauses for components subsequently included in needs clauses. Also, uses 

clauses could be omitted for each component mentioned in a re-exports clause. We 

choose to require a uses clause for each uses relationship to make- it perfectly clear 

in the source code on what other components a given component directly depends. 

I his information is critical for component understanding, maintenance, and program 
analysis, and should not be obscured in anv wav. 

One characteristic that further distinguishes among programming languages sup- 

port imi component-based software engineering is the distinction between components 

and data typos. In Ada and languages based on Xiklaus Wirth's Modula (Modula-2. 

Modula-3. Oberon. and Oberon-2 [\YirS2. IA\'H2]). a component (a package or mod- 

ule) is „of a data type. In those languages, the uses relationship is explicitly encoded. 

In most OOPI.'s|s. however, a component, typically culled a class, is a user-defined 

type from which objects may be declared. Partly as a result of this distinction, most 

OOPL's do not require a class to explicitly list all other classes that it directlv uses. 

In Ada. a with clause placed in the context section of a package encodes the direct 

uses relationship between two packages. If an Ada package, say package A. needs to 

refer to some element defined in another package, say package )'. then A" must include 

a with clause naming V1'1. In general, an Ada package only may be compiled when all 

packages upon which it depends have boon compiled and are available in the program 

library.    This strategy helps ensure that  structural errors are detected as early as 

"Ada 1'AdaO.o. Modula-3. and Oberon all have language mechanisms supporting object-oriented 
programming. 'I lie support these languages provided for modularity has been carried over from 
their non-object-oriented precursors. AdaS3 for Ada and Modula-2 for Oberon and Modula-3. 

'All Ada packages implicitly have visibility to the special package Standard which defines Ada's 
buil'-in types ;,„d operations. Also, packages defining child units (discussed in Chapter 5) have 
visibility to their parent unit but do not require a with with clause naming their parent. Instead, 
the parent unit name is a prefix of the child unit name. 

92 



possible. Note that Ada's use clause allows components to reference public elements 
defined in with'ed packages without using their fully qualified names. Chapter 5 
includes examples showing the use of Ada's with and use clauses. 

In the Modula and Oberon family of languages, the IMPORT clause "imports" 
(makes visible) elements from another module in much the same manner as Ada's 
with clause. In Modula-2 and Modula-3 it is possible to selectively import features 
exported by another module by using a clause of the form "FROM M IMPORT X" where 
M is a module name and X is an explicitly exported (public) element defined in M. A 
module that includes this form of IMPORT clause may refer to the imported element 
X directly instead of using the qualified name M. X. Oberon does not have this form of 
IMPORT clause since its designer believed that explicit qualification of imported names 
is preferable, especially when many modules are involved [RW92]. 

In typed OOPL's such as Java and Eiffel, there are two ways in which one class 
may have a fixed dependency on another. First, class X may be a subclass of class Y, 
in which case X uses Y. This form of dependency is encoded using an inheritance 
mechanism such as the inherit clause in Eiffel and the implements and extends 
clauses in Java. Second, X may be a client of Y without being a subclass of Y. In 
this case, X uses the name Y as a data type for declaring an object or parameter. (In 
Java, Y could also be used within X for type casting.) When X is a client, but not a 
subclass of Y, most OOPL's do not require any sort of "import list" that in a single 
place names all fixed dependencies on other components. Meyer, in describing Eiffel 
[Mey88, p. 211], and Stroustrup, in describing C++ [Str93, p. 416], both note that 
such an import list, would be redundant and could be automatically generated by a 
tool. Without the aid of such a tool, however, a maintainer must search for class names 
throughout a given class in order to determine all inter-component dependencies. 

To avoid possible confusion, we note that Java does have an import statement. 
However, the purpose of Java's import statement is to allow a class to refer to 
other classes using abbreviated names rather than fully qualified names. Thus Java's 
import statement serves essentially the same role as Ada's use clause. 

Like most other OOPL's, C++ does not directly support encoding of the uses 
relationship between a class and the other classes of which it is a client but not a sub- 
class. However, a common C++ idiom is to use the preprocessor directive #include 
to textually insert a C++ header file containing a class interface into another file that 
uses the interface. If, by discipline, each class is associated with a single header file 
that declares its interface, then #include may be used to encode the uses relation- 
ship between two classes. If client class X #include's the header file for class Y, and 
we assume that at link time X will get linked to the class definition for Y, then it 
is reasonable to consider the #include directive a direct encoding of the uses rela- 
tionship. Note that in the case of specification components represented as abstract 
classes, there need not be an associated class definition to a class header file. 
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In summarize, in most (K)PI.'s a module is a class which is a data type. In this 

case, the set of fixed dependencies of component A' corresponds to all data types 

referenced within A" except in», the type A' itself and certain built-in types. These 

lammago do not require explicit encoding of the uses relationship and a tool may be 

necessary to identify and summarize such dependencies. Languages such as Ada and 

the Modula family of languages, in which (lie mechanisms for defining components 

and data types are distinct, provide direct support for encoding the uses relationship 

in the form of an import list. 

4.3    Encoding The implements Relationship 

In Section :].'.) we defined the implements relationship which is based on the 

imps relation defined in Section 2.3.1. The motivation for establishing and clearly 

documentinu the implements relationship was discussed in these sections and also in 

Section 2.1. In this section we discuss how various programming language mechanisms 

may be used to encode the cl<iinru that the implements relationship holds between 

two components       an implementation and a specification. 

The primary reasons for explicitly encoding the implements relationship are: 

• to provide information used to determine appropriate component composition. 

• to indicate an obligation for conformance checking, and 

• to help document the claimed behavior of implementation components. 

At component integration time, a record of the implements relationship may 

be used by a linker or other tool to determine which component compositions are 

appropriate and which are not. for example, if concrete component A" needs abstract 

component )' and concrete component Z implements V. then it is appropriate for 

A to be instantiated with Z. An encoded implements relationship also may require 

a compiler to check structural conformance between the related implementation and 

specification. Similarly, the implements relationship may generate proof obligations 

for a verification tool or testing requirements in order to aid in confirming behavioral 

conformance between two components. By associating an implementation with a 

specification to which it must conform, the implements relationship also serves as 

documentation useful to a software1 engineer working directly with the source code of 
an implementation. 

-"Iin brevity, we will typically use the phrase -encoding an implements relationship" to mean 
more accurately •encoding th< claim of an implements relationship". 



4.3.1    The implements Relationship and Coupling 

Recall from Chapter 3 the components CI_Flipf lop_2 and CI_Flipf lop_3 (Fig- 
ures 3.2 and 3.5, respectively). Both components implement AI_Flipf lop (Figure 3.1) 
and both describe identical operational behavior. The difference between these two 
components is that CI_Flipf lop_3 uses AI_Flipflop while CIJFlipf lop_2 does not. 
There is no reason, in general, why a concrete component must depend on an abstract 
component which it implements. However, many of the language mechanisms most 
useful for associating specifications and implementations couple implementation com- 
ponents to the specification components which they implement. Thus in most lan- 
guages, encoding the relationship C implements A requires that C uses A. We 
discuss a few interesting exceptions to this in Section 4.3.5. 

There are several reasons why it is useful for an implementation component to 
depend on a specification component which it implements. Stating a (claimed) im- 
plements relationship in the source code serves as documentation identifying a spec- 
ification of the component's implemented behavior (although not necessarily all of the 
implemented behavior). For documentation only purposes, however, an implements 
statement may be treated as a semantically irrelevant comment ignored by compilers 
and other processing tools. That is, there need be no syntactic or semantic depen- 
dency just to achieve this documentation objective, and thus no uses relationship 
between the two components. 

As with CI_Flipf lop_3, a concrete component may refer to specification (non- 
programming) elements of an abstract component which it implements. Assuming no 
renaming of types, operations, or variables (programming elements) defined in the ab- 
stract component, this level of reference is sufficient for expressing the correspondence 
(abstraction relation). As we discussed in Section 3.3, recording the correspondence 
is an important aid to justifying the implements relationship. In this case, the 
implementation uses the specification, but not in the normal "compilation depen- 
dency" sense. A typical compiler could process such an implementation component 
without examining the implemented specification component. In RESOLVE/Ada95, 
discussed in Chapter 5, specification elements are encoded as comments which are 
ignored by Ada compilers. 

One of the main reasons programming languages require implementation com- 
ponents to be coupled to interface specification components is to support structural 
conformance checking. That is, language mechanisms useful for encoding the imple- 
ments relationship — most notably inheritance mechanisms — typically require the 
compiler to check that the structure of the implementation conforms to that of the 
specification. We discuss conformance checking below in Section 4.3.2. 

Despite these reasons for making an implementation dependent upon the specifi- 
cation^) that it implements, there are some potential disadvantages to this common 
approach. For example, if the content of a concrete component must explicitly name 
any abstract components that it implements, then establishing a new implements 
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relationship (not derivable from existing relationships) for an existing concrete com- 
ponent will typically require modifying the implementation's source code and poten- 
tially expensive recompilation. A few languages such as ML and C+ + with signatures 
BH07 provide support for encoding the implements relationship without requir- 

ing that implementations refer to the specification components they implement. We 
consider an example of this in Section ■I.3.Ö. 

4.3.2     Conformance Checking 

Prior to placing a concrete component into a component library and making it 
available for client use. we obviously want to have some confidence that it will behave 
as "advertised" when integrated into a system. A component's advertised behavior 
is the behavior specified by the abstract components which it implements. Confor- 
mance checking is the process of determining to some level of confidence that a 
concrete component correctly describes an implementation of the behavior specified 
by an abstract component which it implements. In order for an implements rela- 
tionship to be justified, the structure tnnl behavior of the concrete component must 
conform to that of the abstract component. 

for most programming languages, checking structural conformance is a relatively 
straightforward task carried out by a compiler or interpreter. This involves ensur- 
ing that all types, operations, and variables specified in (lie abstract component are 

matched by compatible concrete types, operations, and variables in the (client-visible 
part of) the concrete component. The type system of the language determines the 
rules for conformance, for languages that support type extension (inclusion poly- 
morphism) and parameterized types (parametric polymorphism), the rules for deter- 
mining what constitutes a match can become somewhat complex [CWS5. LW'9-1]. 

As we have discussed in earlier chapters, very few programming languages in- 
clude mechanisms supporting specification of component behavior. Exceptions arc 
primarily research languages such as OBJ [GogR I] and RESOLYH [SWO-l]. A more 
common approach for constructing behavioral interface specifications (abstract com- 
ponents) is to integrate the use of independent specification and implementation lan- 
guages ;S\Y!)1. DLOfi. JonOO. LvIIKBOS?]. In practice, however, the most common 
approaches for encoding the behavior specified by an interface rely on informal, non- 
rigorous descriptions of component behavior. Unfortunately, informal specifications 
are usually imprecise and ambiguous. Therefore, reasoning about the behavior of a 
concrete component which someone claims implements such a specification mav be 
fault>'. 
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Figure 4.1: A One-To-One Implementation-To-Specification Relationship 

4.3.3    One-to-One Relationships 

One of the first programming languages designed specifically to support modular 
(component-based) software development was Modula-2 [Wir82]. In Modula-2, soft- 
ware components are encoded as modules which may be divided into two parts: a 
definition module and an implementation module. A definition module contains sig- 
natures of types and operations. An implementation module contains data structures 
and operation implementations. A definition module may be used to represent an ab- 
stract instance and an implementation module may be used to represent a concrete 
instance. The Modula-2 compiler checks to ensure that an implementation module 
structurally conforms to a definition module of the same name. Thus, in Modula- 
2 there is a one-to-one, by-name conformance relationship between implementation 
and specification modules. This relationship naturally serves to represent the imple- 
ments relationship when other means are used to enforce behavioral conformance 
between the implementation and definition pair. 

In Ada, a software component is typically encoded as a package. An Ada package 
has two parts: a package specification and a package body. These serve the same roles 
as Modula-2's definition and implementation modules, respectively. As with modules 
in Modula-2, there is a one-to-one, by-name conformance relationship between a pack- 
age specification and a package implementation. Unlike Modula-2 modules, however, 
Ada packages may be generic (parameterized). Generic package specifications and 
package bodies may be used to encode template components. Figure 4.1 depicts the 
one-to-one implements relationship between a specification component, such as a 
Module-2 definition module or an Ada package specification, and an implementation 
component, such as a Modula-2 implementation module or an Ada package body. As 
depicted by the thick arrow, this is also a uses relationship since the implementation 
components have visibility over and depend upon (for compilation) their correspond- 
ing specification components. 
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I he implenientation-to-specification relationships encoded using Modula-2 mod- 
uli's anrl Ad;i packages help reduce the coupling between implementation components. 
I-or example, if implementation component C needs specification component .4. then 
C may refer to .-1 and be compiled without the corresponding implementation of .4 
present. further more, the concrete component that implements A may be modified 
and recompiled without requiring recompilation of client components which use .4. 
However, if .4 is a Modula-2 definition module or an Ada package specification, a com- 
ponent library containing .4 may only have a single implementation component that 
encodes the implements relationship with .421. Thus, these language mechanisms, 
modules and packages, lack support for multiple implementations of a single specifica- 
tion. Furthermore. Modula-2 modules and Ada packages (prior to the 1900 language 

revision) are not easily extendable. The successors to Modula-2. Oberon [PAY92] and 

Modula-3 'HarS2'. and the 199.1 revision to Ada [IntOöb] all include mechanisms that 
support multiple implementations and component extension. 

4.3.4    Many-to-One Relationships 

In Section 1.1 we discussed inheritance and classes, and stated that specification 
inheritance is useful for encoding the implements and extends relationships. One 
of the many uses of inheritance is the expression and enforcement of a conformance 
relationship between two data types. When a component specifics or implements a 
siwjU data type, as does a class, inheritance may be used to express a conformance 
relationship between two components. For example, if class D is derived from (inherits 
from! class B. then class /) is a subclass of B and. in most cases, exports all operations, 
variables, exceptions, etc.. exported by B. Tints, class /) structurally conforms to 
class B". 

With specification inheritance, the base class, from which conforming subclasses 
are derived, does not provide any implementation detail. This is analogous to a 
Modula-2 definition module and (the public part of) an Ada package specification. 
In OOPI. terms, a class which does not provide a type representation and implemen- 
tations for all its operations is called an abstract class or an abstract base class. Most 
OOPL's have mechanisms for encoding abstract classes or their equivalent. In C+ + 
a cla-s with at least one pure virtual function is an abstract class. In Ada. a package 
exporting an abstract type corresponds to an abstract class. In Eiffel, an abstract 
cla^s is called a (hftrnrf class. 

-'\;iri<>ii- tools and tricks may he used to circumvent the language limitation of one package bodv 
per package specification within an Aria component library. However, within a single executable 
system, there may only he one package body per package specification. 

-'-Some OOPL's allow a derived class D to "hide" inherited operations of base class B. If this 
technique is used, then /) will not conform to B. 
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Figure 4.2: A Many-To-One Implementation-To-Specification Relationship 

An abstract class that provides no implementation detail is useful for encoding 
an abstract component that exports a single type. A concrete class, a class that fully 
implements its data representations and operations, is useful for encoding a concrete 
component that exports a single type. The structural aspects of the implements 
relationship may be encoded using specification inheritance by deriving a concrete 
class from an abstract class. 

Figure 4.2 depicts two (claimed) implements relationships among two concrete 
classes and an abstract class. Each concrete class is derived from the abstract class 
shown at the top of the figure. Although a language's inheritance mechanism may 
be used to encode this type derivation, the concrete components need not "inherit" 
anything from the abstract class. Each concrete class must override all abstract op- 
erations specified by the abstract class with structurally conforming and fully imple- 
mented operations. Additionally, each concrete class must provide a data structure to 
represent the exported type of the concrete class. Note that when specification inheri- 
tance is used to encode the implements relationship, the implementation component 
uses the specification component that it claims to implement. This is indicated by 
the thick arrows in Figure 4.2. 

In contrast to the one-to-one implementation-to-specification relationship depicted 
in Figure 4.1, inheritance supports encoding many-to-one implements relationships. 
Any number of concrete classes may be derived from and implement a single ab- 
stract class. Using this approach, a component library, and even a single executable 
program, may include different concrete components, each of which explicitly imple- 
ments a single abstract component. Thus this use of inheritance supports (better 
than the mechanisms of Modula-2 and Ada83) encoding the implements relation- 
ship and component-level maintenance. The RA95 discipline (discussed in Chapter 5) 
and RESOLVE/C++ discipline both use specification inheritance for encoding the 
implements relationship. 

In Section 4.1.4 we pointed out that some newer languages use different mech- 
anisms for specification inheritance and implementation inheritance.  Currently, the 
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most popular of these languages is Java. In addition to classes which may he ab- 
stract or concrete-. Java includes interfaces which are similar to abstract classes. In- 
like .lava's abstract classes, however, interfaces may only include abstract operations 
(called abstract methods in .lava) and constants. Java interfaces define structural 
component interfaces and serve as a basis for specification inheritance. 

Java s keyword implements is used for specification inheritance only while the 
keyword extends may be used for specification or implementation inheritance23. In 
a Java class or interface, the extends clause encodes the traditional form of inheri- 
tance found in many OOPI.'s. However, a class may only -'extend" one other class. 
Ihis limits Java's implementation inheritance to sinr/le inheritance. On the other 
hand, a Java class may •'implement" one or more interfaces and a Java interface may 
"extend" one or innre interfaces. Thus Java's specification inheritance, encoded by 
an extends clause in an interface or an implements clause in a class, supports mul- 
tijih inhrriffinec. Multiple- inheritance, which often leads to problems when used for 
implementation inheritance, does not cause the same problems when used for specifi- 
cation inheritance. Java's use of distinct language mechanisms to support these two 
different, and sometimes conflicting, uses of inheritance is an improvement over the 
more traditional approach of using one inheritance mechanism for both purposes. 

In Java, an abstract instance exporting a single type may be encoded by an inter- 
face. A concrete instance exporting a single type may be encoded by a concrete class 
(a class with no abstract methods). I'sing this strategy, the structural aspects of the 
implements relationship may be encoded conveniently with an implements clause 
in a concrete- class that names an interface, which tin- concrete class implements. 
figure 1.3 shows the Java interface AI.Flipflop followed by the Java concrete class 
CI-Flipflop_.3. These an- tin- Java encodings of the abstract instance shown in Fig- 
ure 3.1 and the concrete instance shown in Figure 3.5. Note that the parameter to 
Toggle and Test (of the exported type) is implicit in Figure- 4.3 since Java uses the 
traditional object-oriented notation for method declarations and invocations. 

Despite Java's support for conveniently encoding the structural aspects of the 
implements relationship, as shown in Figure 1.3. Java lacks support for encoding 
a mon- general implements relationship. A Java class only can define a single 
extendable type. Thus, a Java class cannot define two related types, such as Point 
und Line, both of which may be- extended using inheritance. This limitation is 
cemimon to the- object-oriented paradigm, which uses a single- mechanism, typically a 
cla-s. to define- both components and programmer-defined ADT's. Mechanisms such 
as Java jmel-iujrs and C+ + friend functions provide inelegant means for working 
around this limitation in most situations. 

Java s lack of support for parameterized classes, templates, presents a more- se- 
rious limitation.   Various idioms exist  for "simulating" templates in Java [OW97J. 

2 \\<   mined 11 if - terms '•implements" and  "extends" before looking at .];iv;i.   Their use l>v .];iv;i 
n-infniT(-> nur belief that these are natural terms for coiiveyinj; the intended lrlationships. 
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// ÄI_Flipflop.Java 

public interface AI_Flipflop { 
// modeled by BOOLEAN 
// exemplar  ff 
//  initially  ff  =  FALSE 

public void Toggle (); 
// ensures   ff  = NOT  #ff 

public boolean Test (); 
// ensures   Test   = ff 

} 

//  CI_Flipflop_3.java 

public class CI_Flipflop_3 
implements AI_Flipflop { 

private int state = 0; 
// convention   0  <=  state  <= 255 
//  exemplar  ff_rep 
//  correspondence  ff =   ((ff_rep.state MOD 2)   =  1) 

public void Toggle () { 
state = (state + 1) % 256; 

} 

public boolean Test () { 
return ((state % 2) == 1); 

} 

Figure 4.3: Java Encoding of CLFlipflop_3 implements ALFlipflop 

However, using such strategies to encode a template-to-template implements rela- 
tionship leads to extremely awkward and often inefficient code. Some researchers 
have proposed the addition of templates to Java [BLM96, OW97]. 

4.3.5     Many-to-Many Relationships 

As we noted in Section 2.3.1, the imps relation is a many-to-many relation. There- 
fore, the implements relationship is a many-to-many relationship in the following 
sense. Many different concrete components may implement a single abstract com- 
ponent; and a single concrete component may implement many different abstract 
components.  The first case, multiple implementations of a single specification, is a 
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figure 1.1: Many-To-Many Imphmientatfon-To-Specifie-atfon Relationships 

('(iininrin situation and essential for component-level maintenance of component based 
systems (both software and hardware systems). The inheritance-based approach dis- 
cussed in Section 4.3.1 supports multiple implementations of a single specification. 
I lie second case, multiple specifications of a single implementation, arises implicitly 
from specification extension (recall Equation 2.1) and also may be useful to provide 
distinct interfaces or ""views" of a single1 implementation. 

Ii is possible to explicitly encode implements relationships among a single con- 
crete component and more than one abstract component. For example, in program- 
miim languages that support multiple inheritance, a concrete class may inherit from 
multiple abstract classes. In Java, a concrete class may include an implements clause 
that names more than one interface. In this situation, structurally identical methods 
may (but need not) be defined in and ""inherited" from more than one interface. Fig- 
ure 4.-1 depicts a simple inanv-to-niany iniplementation-to-speeification scenario. In 
this example, the concrete component encoded as implementation module .4 imple- 
ments mi (I uses both abstract components, specification modules 1 and 2. Imple- 
mentation module A must conform to both specification modules and may be used 
where implementations of cither or both specifications are required. As in Figure- 4.2. 
the uses relationship between implementation and specification comes from employ- 
ing an inheritance mechanism to encode1 the implements relationship. 

Fncoding an implements claim with any mechanism that couples an implemen- 
tation to a specification has some disadvantages. Inheritance is the primary example 
of such a mechanism. For example, to encode n new implements relationship for 
an existing concrete component, perhaps one in object code form in the component 
library, requires a source code change1 and reconipilation of the1 concrete component. 
Baumgartner and Russo present an example of how this problem might arise in prac- 
tice in the context of OOP [BR07. \\ 2.1]. The solution they propose and implement 
for C—-!-'BR07. and. with Läufer, for .lava [LBROO] centers around structural ronfor- 
nianrt  of components.  With structural conformance, a class does not have1 to name 
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the interface24 to which it conforms as is required with inheritance. At component 
integration time, the compiler determines whether a class conforms to an interface 
by comparing its structure (public names and signatures) to the structure of the sig- 
nature. A similar structural comparison is performed by ML in determining whether 
an ML structure (an implementation component) conforms to an ML signature (a 
structural specification component). 

With the structural conformance approach, an implementation component does 
not need to be coupled to a specification component that it implements in order for an 
instance of client code that needs the specification component to use the implemen- 
tation component. Therefore, an existing implementation component does not need 
to be modified in order for it to fulfill new, and possibly unforeseen, requirements. 
Furthermore, this strategy clearly supports many-to-many implements relationships 
among concrete and abstract components. 

As with the other approaches discussed in this chapter, language mechanisms 
supporting structural conformance do not address behavioral conformance between 
components. Furthermore, structural conformance does not require any language 
mechanisms to explicitly record the implements relationship as does inheritance. 
As a result, it is possible for two components to "accidentally" conform structurally 
but not conform behaviorally. Läufer et. al., propose the use of properties to ad- 
dress the problem of accidental conformance [LBR96, p. 6]. Properties are dummy 
methods with "well known names" that encode semantic information. For example, 
the property "LIFO" might be included in abstract and concrete classes for stack 
components. 

A more powerful and flexible solution to this problem is to use independent map- 
pings between components, which describe how the behavior of one component con- 
forms to that of another component. As we discussed in Section 3.3, recording the 
correspondence (abstraction relation) between two components documents how the 
behavior described by one component may be understood and justified as conform- 
ing to the behavior described by another component. In the examples in Chapter 3 
(Figures 3.5, 3.7, 3.8, 3.11, 3.18, and 3.27) the correspondence is recorded in con- 
crete components and implicitly associated with the abstract component named in 
the implements clause. Furthermore, in each case there is an implicit mapping of 
each element of the abstract component to its corresponding implementation element 
in the concrete component. This approach couples a concrete component to the ab- 
stract component (s) that it implements and fixes the set of abstract components 
that may be used as client-level descriptions of the implementation. It also fixes the 
way in which the concrete component is interpreted as conforming to an abstract 
component. To add new relationships or modify existing ones requires modifying the 

24In their proposal for C++, Baumgartner and Russo introduce a language construct called a 
signature, to which classes may conform structurally without inheritance. In their proposal for Java, 
Java interfaces serve this purpose. 
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imire 1.Ö: Independent Map])iii,u,s Between Specifications and Implementations 

concrete component even though the operational behavior the component implements 
does not change. 

An alternative approach is to record conformance relationships, such as imple- 

ments and extends, in a separate module. This approach is used by the functional 

lammage OBJ ;GogS(T and is modeled by interpretation mappintjs in the ACTI model 

of software subsystems [KdwOO. ?jl.l()]. In OB.l. a module can be either an object or 

a thfnrij. An OB.l object defines types (called sorts in OB.T) and associated op- 

erations. An OB.l theory provides an abstract, axiomatic description of behavior, 

llius. OB.l objects and theories correspond to concrete and abstract components, 

respectively. An OB.l view describes how a module, either an object or a theory. 

conforms semanticallv to a theory. Thus, a view may be used to describe how an 

objf't implements a theory or how a theory extends another theory. In ACTI. 

an interpretation mapping plays a similar role. An interpretation mapping defines a 

correspondence between two abstract instances, explaining how one abstract instance 

can be interpreted as satisfying the behavior described by the other. 

1-itmre .}..") shows how two abstract components. Specification Module 1 and 2. 

could be related to two concrete components. Implementation Module A and B. with 

four independent "mapping units". In this example, each of the four mapping units 

could describe a different implements relationship between the two components to 

which it refers. As the arrows in Figure Tö imply, the mapping units refer to (depend 

on) the specification and implementation modules, but not the other way around. 

Thus an implementation need not refer to a specification that it implements and 

vice versa. 1 his strategy allows new explicit conformance relationships to be added to 

a component library without modifying existing components which may 1»- involved 

in the new relationships. 
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Figure 4.5 shows two different mapping units, Mapping y and Mapping z, relat- 
ing Implementation Module B and Specification Module 2. This is possible be- 
cause a mapping unit can rename various elements in describing how once component 
conforms to another. Both OBJ views and ACTI interpretation mappings support 
renaming. As a more concrete example, assume that Specification Module 2 in 
Figure 4.5 describes a stack abstraction such as AT_Stack shown in Figure 3.10 on 
page 57. Now assume that Implementation Module B describes an implementation 
of a deque, a double-ended queue, including the deque operations: Enqueue_At-Front, 
Enqueue_At_Rear, Dequeue_At_Front, and Dequeue_At_Rear. Mapping y could map 
Enqueue_At_Front and Dequeue_At_Front to the stack's Push and Pop operations, 
respectively. Describing a different way to implement a stack, Mapping z could map 
Enqueue_At_Rear and Dequeue_At_Rear to Push and Pop, respectively. To complete 
the picture, Implementation Module A might be at typical stack implementation 
with only operations Push and Pop. In this case Mapping x would describe the obvious 
mapping with no renaming. Specification Module 1 might describe the behavior 
of a bag (multiset) container with operations Insert and Remove. Then Mapping w 
would map Push and Pop to Insert and Remove respectively. 

The independent mapping approach provides significant flexibility. However, it 
adds complexity. The implements relationship is no longer a simple binary relation- 
ship as modeled by imps in Section 2.3.1. Also, when a mapping unit is allowed to 
rename types and operations, it plays an important operational role at component 
integration time. In addition to selecting an implementation component to instanti- 
ate a template, the system developer may also need to select an associated mapping 
unit to identify the appropriate operation-to-operation bindings. OBJ uses default 
views (default mappings) to simplify component composition [Gog86, p. 21]. 

4.4    Encoding The extends Relationships 

In Section 3.5 we defined the extends relationship which is based on the exts 
relation defined in Section 4.1.4. Documenting the extends relationship records the 
claim that any implementation of one specification will also be an implementation of 
another specification. Thus if abstract component A2 extends abstract component 
Ai, then all implementations of A2 will also be implementations of Ai. Thus A2 must 
specify all the behavior specified by Ax and usually will describe additional functional 
behavior not specified by Ai. The motivation for establishing and clearly document- 
ing the extends relationship is to foster the development of new components with 
enhanced capabilities, but which remain compatible with existing systems and their 
requirements. 

In many respects, the extends relationship is similar to the implements rela- 
tionship. Both are many-to-many behavioral conformance relationships. Many of the 
issues discussed in Section 4.3 pertaining to encoding the implements relationship 
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abo apply to encoding the extends relationship. For example, while extends is not 

a dependency relationship, like implements, it is easiest to eneode as such. Like 

implements, extends is defined as a iiiaiiy-to-many relationship. However, most 

language mechanisms useful for encoding extends are the same as those used for 

encoding implements and only support many-to-ono extends relationships. We do 

not address these issues in detail in this section since they were discussed at length 
in Section  1.3. 

The most common way to encode the extends relationship in modern program- 

mine" languages is to use an inheritance- or inheritance-like language mechanism. In 

Section 3.0.1 we discussed the differences between the meaning of extends and the ef- 

fect typically achieved by using inheritance. The extends relationship holds between 

two specifications when one conforms to another. Neither of the two specifications 

need mention the other (as with AI.FFExt in Figure 3.1.") which extends AI_Flipflop 

in figure 3.1). I se of inheritance always implies a uses relationship. If abstract class 

Aj inherits from abstract class A\ (typo A-, is derived from type .4,) then A-> uses 

.1;. As discussed in Section 3.5.I. there are advantages and disadvantages to using a 

coupling relationship to encode the extends relationship. 

Several newer OOPL's such a .lava provide distinct language mechanisms for 

adding additional elements to abstract "interface-only" components and for adding 

additional elements to implementation components. For example. Java's extends 

keyword, when used to relate« two .lava interface components, provides a form of 

specification inheritance. Figure TO shows an example of this use of Java extends. 

The interface AI.Flipflop_With.Set shown in the bottom of this figure extends 

AI_Flipflop shown in the top of the figure. The operations Toggle and Test are 

inherited from AI_Flipflop by AI.Flipflop^With^Set. 

Java's extends mechanism is convenient for encoding the extends relationship 

between abstract instances as shown in Figure- TO. However, since Java does not 

support templates, only the abstract instance to abstract instance form of extends 

(defined on page 01) may be encoded in Java. Furthermore, when the extends key- 

word is used to relate two Java classes, it provides implementation inheritance rather 

than specification inheritance. While the common meaning of the term "extends" ap- 

plies to both situations, we prefer to classify the use of extends between two classes 

as a specific application of the uses relationship. While implementation inheritance 

is useful for coding coupled implementations of extension components as discussed 

in Section 3.Ö.2. it is also commonly used in situations when1 then1 is no intended 

behavioral conformance between the components. 

If If! 



// AI_Flipflop. Java 

public  interface AI_Flipflop   { 
// modeled by BOOLEAN 
//  exemplar ff 
// initially ff = FALSE 

public void Toggle   () ; 
// ensures  ff = NOT #ff 

public  boolean Test   () ; 
// ensures  Test  =  ff 

II  AI_Flipflop_With_Set.Java 

public  interface AI_Flipflop_With_Set 
extends  AI_Flipflop   { 

public  void  Set    (); 
//  ensures  ff =  TRUE 

} 

Figure 4.6: Java Encoding of ALFlipflop_With_Set extends ALFlipflop 

Unlike Java, most OOPL's use the same inheritance notation for at least three 
conceptually distinct purposes: implementation to specification conformance, speci- 
fication to specification conformance, and implementation to implementation confor- 
mance. Here we are assuming that abstract classes are used as specification compo- 
nents. In Chapter 5 we discuss how RA95 uses Ada's single inheritance mechanism 
for each of these three purposes. 

In addition to inheritance, Ada also provides another mechanism which supports 
extension of components (packages). Ada's hierarchical library units allow a "child 
unit" package to extend an existing "parent unit" package without requiring any 
alterations to the parent unit or to systems which use the parent unit. (We discuss this 
mechanism in detail in Chapter 5.) While inheritance is a mechanism for extending a 
type, a child unit extends an Ada package which may include definitions of more than 
one type. Thus, the hierarchical library unit mechanism offers some advantages over 
inheritance and is indeed quite useful. However, this mechanism does not support 
substitutability of components as does inheritance. This is because there is no way 
to encode the needs relationship based on hierarchical library units. That is, there 
is no way in Ada to encode the requirement that any child unit of a parent unit 
may be supplied as an actual parameter to a concrete template (a generic package) 
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when the formal parameter is restricted to he an instance of the parent unit. Tim 

the hierarchical library unit mechanism alone is not appropriate for encoding tl 

implements relationship in a way that supports component-level maintenance. 

4.5    Encoding The needs Relationship 

In Section .11 we defined the needs relationship which is based on the needs 

relation defined in Section 2. 1.2. The needs relationship expresses a deferred depen- 

dency on an implementation component. In this section we briefly discuss how the 

needs relationship may be encoded with programming languages. 

In programming language terms, using the needs relationship is a way of express- 

ing polymorphism. As discussed in Section 1.1.3. the two primary approaches to poly- 

morphism supported by progranlining languages are parametric polymorphism and 

subtype (inclusion) polymorphism. Languages support parametric polymorphism, 

parameterized components, through mechanisms such as generic packages in Ada. 

generic classes in Eiffel, templates in C+ + , and functors in ML. Subtype polymor- 

phism is supported by inheritance. 

The needs relationship is a form of what many authors call bounded pnh/mnr- 

jdit.-iii CW8"). If concrete template (' needs abstract instance A. then the set of 

acceptable actual parameters for C is bounded by .1. .4 identifies the set of con- 

crete instances that may be used to instantiate ('. As several authors have pointed 

out. bounded polymorphism is difficult to express using subtype polymorphism alone 

()\\ 07. LDGMD.V. Although it is possible« to encode the needs relationship using 

only subtype polymorphism, encoding bounded polymorphism without parametric 

polymorphism tends to lead to very awkward code. Furthermore, relying on inheri- 

tance to achieving bounded polymorphism (as currently must be done in Java) can 

lead to code bloat and performance penalties for run-time type casting and run-time 

type checking [BLM%.. Therefore, our clear preference is to use parametric poly- 

morphism, perhaps in conjunction with subtype polymorphism, to encode- the needs 
relationship. 

Section .").."> describes how the needs relationship is encoded in RESOLVE/Ada0."> 

using parametric polymorphism (Ada generics) and subtype polymorphism (Ada type 

extension). A similar approach based on C+ + templates is used by RESOLYE/C+ + 

\\ei07 . With both Ada and C+ + , encoding the needs relationship is not a trivial 

matter. Instead of a single language mechanism to express this relationship, such as 

facility parameters in RESOLVE [SWOI]) several language mechanisms must be used 

in conjunction with each other to achieve- the approximate effect. We believe that 

this points out a significant weakness in current programming languages intended for 

use in component-based software engineering. 
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4.6    Chapter Summary 

In this chapter we examined how the mechanisms of modern programming lan- 
guages can be used to encode the component relationships defined in Chapter 3. While 
the importance of modularity, information hiding, polymorphism, and extendibility 
has been understood for at least 25 years, the evolution of programming languages 
has been slow. Only recently has the importance of parametric polymorphism been 
recognized outside of the academic community and been integrated into widely used 
languages such as C++. Nevertheless, the most widely used new language, Java, 
currently does not support parametric polymorphism. Furthermore, most language 
implementations that do support parametric polymorphism generate independent 
code for each template instantiation which often leads to code bloat. As we discussed 
in Section 4.5, parametric polymorphism is very useful for encoding the needs rela- 
tionship. 

On balance, the emergence of OOP as a programming paradigm has led to better 
language support for developing component-based software. Most OOPL's provide 
good facilities for data abstraction and modularity. Interface-only components, such 
as abstract classes, are useful for defining structural specification components which 
may be augmented with behavioral specifications to encode abstract components. 
While there has been a tendency to use inheritance for many disparate purposes, 
when used in a disciplined manner, inheritance is a useful tool for encoding relation- 
ships such as implements and extends. Several newer languages, such as Java and 
Theta, provide distinct mechanisms for expressing specification conformance and im- 
plementation inheritance. In the case of Java, use of the keywords implements and 
extends for these mechanisms makes encoded relationships easier to identify and 
understand. 

A weakness of most OOPL's is the use of a single mechanism, the class, for both 
modularization and new type definition. This strategy makes it difficult to define 
more than one extendable type within a single component. OOPL's typically require 
breaking encapsulation when one type needs access to another type's representation. 
Thus, with OOPL's, encoding the extends relationship is generally limited to exten- 
sion of user-defined types. 

In order to fully support expression of behavioral relationships between software 
components, implementation and specification notations need to be better integrated 
into a single language. While several research languages have taken this approach, to 
date, such languages have received little attention outside of academia. 
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CHAPTER 5 

BEHAVIORAL RELATIONSHIPS IN RESOLVE/ADA95 

In this chapter we demonstrate how the behavioral relationships described in 
Chapter 3 may be expressed using RESOLVE/Ada95. We begin with an introduc- 
tion to RESOLVE/Ada95. Then we examine how the language features of Ada are 
used to express abstract, concrete, and template components, and the behavioral 
relationships between them. We continue to use the component coupling diagram 
notation introduced in Chapter 3, to express design time relationships. We also in- 
troduce a new component instantiation diagram notation that depicts integration 
time relationships, i.e., how the components of a particular system have been com- 
posed. The chapter concludes with a discussion of the limitations of Ada with respect 
to its support for expression of behavioral component relationships. 

5.1    RESOLVE/Ada95 

RESOLVE/Ada95 (RA95) is a discipline for software component engineering that 
combines the Ada programming language with the specification notation and design 
discipline of RESOLVE [SW94, WOZ91, Har90]. RESOLVE is three things. First, 
it is a detailed framework for software component engineering. RESOLVE is also a 
language which includes two integrated sub-languages: a model-based formal spec- 
ification language and an imperative, sequential,, programming language. Finally, 
RESOLVE is a discipline with detailed design principles which guide software engi- 
neers in the development of high quality software components and systems. 

RA95 is a major revision to the RESOLVE/Ada (RA83) discipline described by 
Hollingsworth [Hol92] and based on the original 1983 Ada language definition [Dep83]. 
Both RA83 and RA95 apply the component design principles and formal specification 
notation of RESOLVE to software components implemented in Ada. Unlike RA83, 
however, RA95 explicitly encodes the behavioral relationships between components 
using new language mechanisms. RA95 also makes explicit the ACTI view of compo- 
nents as abstract and concrete templates and instances [Edw95, §3.3]. Furthermore, 
use of new language mechanisms makes most RA95 components much simpler to 
encode than similar RA83 components. 
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Ada s st rone support for modularity and genericity have long made it a good pro- 

gramming language for implementing parameterized components. The 109.") revision 

to Ada added substantial new support for object-oriented programming (OOP), a new 

model of module extension, and more powerful generic parameterization mechanisms. 

HAD.) relies heavily on many of the new Ada language mechanisms. In some aspects. 

HAD:, is similar to the RFSOFYF/C+ + (RCPP) discipline developed concurrently 

by Kdwards. Weide, and Zhupanov [YYeiDT]. For example, both RAO.", and RCPP rely 

heavily on inheritance mechanisms to support expression of behavioral relationships. 

There are many differences, however, between RAO.") and RCPP due to differences 

between Ada and CV + and differences in the basic approach taken. 

The RCPP discipline relies heavily on the use of preprocessor macros that serve1 

to make the -Source" language of RCPP appear substantially different from that of 

typical CVr. The benefits of this approach include making the RESOIA'E and ACTI 

perspectives more explicit, hiding annoying C++ syntax, and improving maintain- 

ability by reducing source redundancy. The approach to RAO.") does not require the 

use of a preprocessor. Implementing components using the RAO") discipline entails 

codiim. directly in Ada. One benefit of this approach is that RA0Ö uses language 

mechanisms of Ada largely as they were intended to be used. Therefore explaining 

the rationale for RAO-Vs use of various language mechanisms is easier. Another ben- 

efit is that maintenance of PA0."> code is maintenance of Ada code. Thus, analysis 

and maintenance tools available for Ada should be directly applicable to components 

developed using the RAO.") discipline. Finally, a possible practical benefit of this ap- 

proach is that RAD.") may be more accessible to experienced Ada programmers than 
RCPP is to experienced C+J   programmers. 

Despite their tremendous complexity, neither Ada nor C++ provides an ideal 

set (or subset) of language mechanisms for supporting software1 component engineer- 

ing. I he RPSOI.YF language, which was designed specifically to support software 

component engineering, can express notions which arc either impossible or extremely 

awkward to express in Ada or C+ + . However, one clear advantage Ada and C+ + 

have over RPS( )IA P is the availability of commercially supported compilers on a wide 

variety of platforms. Thus. RAO.", and RCPP make it easier for software engineers to 

apply the RPSOLYF discipline in the implementation of software components. 

The remaining sections of this chapter discuss many, but not all. aspects of RAOY 

We focus on the expression ofbehavioral relationships between RA0"> components. In 

doine so. we describe nearly all aspects of RA0Ö that distinguish it from RA83. We 

also point out that the RA0."> discipline presented in subsequent sections is onlv one of 

many possible strategies for applying tin1 RFSOIA'F discipline to Ada. This version 

of RAO") attempts to explicitly express as many aspects of the RFSOIA'F framework 

a< possible. Due to the current immaturity of Ada compilers supporting the 1905 

lammaue definition, we have not been able to assess the practicality of this particular 

approach on large systems (although all components shown in this Chapter do compile 
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on the current GNAT compiler). As Ada compilers become more robust, the RA95 
discipline may be revised to ensure it provides a viable approach for building large 
systems with available Ada compilers. 

5.2    RESOLVE/Ada95 Abstract Components 

In RA95, abstract components are either abstract kernel components or extensions 
to other abstract components. This section describes abstract kernel components and, 
in doing so, most aspects of RA95 abstract components. Section 5.6 describes abstract 
components that extend other abstract components. 

An abstract kernel component is a specification that typically has no dependen- 
cies on other specific components. We could use, for example, an abstract kernel 
component to specify the behavior of a component that provides a queue of integers. 
In RA95, this specification would be based on a mathematical model of a queue of 
integers such as a string of integers. Here the phrase "string of integers" refers to 
the mathematical concept of string defined by string theory and the mathematical 
notion of integer. The signature of a queue of integers would be characterized by a 
type name, such as Integer.Queue, and the signatures of primary operations on that 
type such as Enqueue and Dequeue. The functional behavior of the integer queue 
operations would be described in terms of the queue's mathematical model. For ex- 
ample, the behavior of an initialization operation could be described as returning an 
empty string of integers. The behavior of an Enqueue operation could be described 
as ensuring that the integer to be enqueued is placed at the right end of the string 
of integers modeling the queue. While a specification such as this does depend on 
mathematical string theory and the built-in Integer type, it does not depend on any 
other software components. 

An abstract kernel component specifying a queue of integers would be an abstract 
instance. A more useful specification would be an abstract template describing the 
behavior of a generic queue. Such an abstract template would be parameterized by 
the type of item to be contained in instances of the template. An abstract instance 
of a queue abstract template might depend on another specific component providing 
the item type. The queue abstract template itself, however, need not depend on any 
other specific component. In order to support greater reusability, most RA95 abstract 
kernel components are abstract templates as opposed to abstract instances. 

One of the aspects of the RESOLVE framework that most distinguishes it from 
other disciplines is its use of the swapping paradigm. RESOLVE uses swapping 
instead of assignment as the primary method for data movement. The use of swap- 
ping provides profound benefits and is one of the cornerstones of the RESOLVE 
framework[HW91]. The Swap operation simply exchanges the values (both the ab- 
stract and concrete values) of its two operands. Swap provides the efficiency of assign- 
ment implemented by copying a pointer (shallow copying) while maintaining value 
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semantics like assignment implemented hy copying a value (dec]) copying). Using 

swapping avoids the aliasing problems which result from shallow copying and which 

significantly complicate formal justification of the implements relationship between 

implementations and specifications. An important insight on which the RESOLVE 

framework capitalizes is that deep copying is rarely needed when components are de- 

signed to use swapping. RADÖ's support for swapping as the primary data movement 

operation h;is significant implications that affect the way in which Ada is used to 

encode RAD") abstract kernel components. 

An RADÖ abstract kerne! component is encoded as an Ada package, usually 

generic, which exports an obstruct ti/jie and abstract primitive operations of the type. 

J he exported abstract type is declared as an obstruct taipjed limited private ti/pe. 

In Ada abstract types are ioipjed fi/pes from which no objects (variables) may be de- 

clared. Ada tagged types are types from which new user-defined types may be derived 

using ttjpi (.illusion, a form of inheritance. Primitive operations of a tagged type are 

those operations declared in the same package as the tagged typo and having at least 

one parameter of the tagged type. In Ada. only primitive operations are inherited 

by new types derived from another tagged type. (In OOP terminology, the exported 

tagged type is a class and the primitive operations are its member functions.) 

The type exported by a kernel abstract component is limited private which means 

that assignment and equality operations are not automatically defined for objects of 

the type. Since RAf)5 uses swap instead of assignment as the primary data move- 

ment operation, a primitive assignment operation is unnecessary. In situations where 

the deep copying functionality of assignment is needed, it may be added with an 

extension component as described in Section 5.0. While it would be technically pos- 

sible to support deep copy assignment in all kernel components, the automatically 

defined equality is an Ada function and is not compatible with RA95 as explained 

below. Thus. RA05 uses Ada's limited private types to prevent automatically defined 

assignment and equality. 

An unfortunate requirement of Ada functions is that their parameters must be "//;" 

//""A . "I he intent of this requirement is to ensure1 that a function implementation does 

not change the values of the actual parameters used in a function call. The problem 

with this requirement is that it is both overly restrictive and largely ineffective in 

achieving its intended purpose. Eor example, consider an operation to determine if 

two queues are equivalent, i.e.. whether they represent the .same abstract value. An 

implementation of this operation should be permitted to remove and compare items 

from each queue as long as it returns the queues back to their original abstract values 

before completing execution. Ada. however, does not allow an "in" mode formal 

parameter to be passed as an actual parameter to another operation where an "in out" 

nmd< parameter is required. Therefore, operations of the encapsulated representation 

type cannot be used to disassemble the queues in order to compare individual queue 

items. A method of circumventing this limitation would bo to represent a component's 



data structure as a pointer (an Ada access type) to an unencapsulated data structure. 
This is clearly unacceptable as a general solution since it precludes constructing data 
representations from other encapsulated types. Thus, in general. RA95 prohibits the 
use of Ada functions since they preclude implementations that need to directly or 
indirectly alter formal parameter values25. 

In the special case of the equality function, a more extreme general solution is 
possible. We could require that all types support equality and thus make it possible to 
provide encapsulation with non-limited private types. Then an implementation of an 
equality operation could call the equality operation(s) of its constituent representation 
type(s). This approach is unacceptable from the RESOLVE perspective since for all 
but simple types equality testing tends to be very expensive and is often unnecessary 
(and theoretically uncomputable for some types). Therefore, RA95 kernel components 
only define an equality operation (with an Ada procedure) on types for which equality 
is an essential operation. Like copying operations, RA95 equality testing operations 
may be provided as extensions. 

The RESOLVE counterpart to an "in" mode parameter is a preserves mode pa- 
rameter. An operation is permitted to change the representation value of a preserves 
mode parameter as long as there is no net change in the abstract value of the parame- 
ter. In addition to preserves mode, RESOLVE parameter modes include alters mode, 
produces mode, and consumes mode. An operation may change the abstract value of 
an alters mode parameter. The initial abstract value of a produces mode parameter 
is irrelevant to an operation's effect. The initial value of a consumes mode parameter 
generally is relevant to an operation's effect and its final returned value must be an 
initial value of its type. In RA95, operations are encoded as procedures. All parame- 
ters, regardless of the RESOLVE mode, use Ada's "in out" mode except for preserves 
mode parameters of built-in scalar types. In this situation "in" mode is used in order 
to allow scalar literal values as actual parameters. Formal comments identify the 
RESOLVE mode of each procedure parameter in RA95. While RESOLVE'S parame- 
ter modes convey design intent, their primary purpose is to simplify specification of 
operation preconditions and postconditions. 

All RESOLVE components that define types provide the three standard opera- 
tions: Initialize, Finalize, and Swap. Initialize sets the abstract value of an 
object to an initial value of its type. RESOLVE guarantees that all objects are au- 
tomatically initialized when they come into existence. Finalize is typically used 
to reclaim system resources allocated to an object. RESOLVE guarantees that all 
objects are automatically finalized immediately before they cease to exist. The func- 
tional behavior of Finalize usually does not need to be specified. Swap exchanges 
the abstract values of two objects as described above. 

25RESOLVE/C++ does not suffer from this annoyance since C++ function parameters may be 
modified. 
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RAD.", uses Ada's controller! types to achieve automatic initialization and final- 

ization of all objects except built-in scalars. A controlled type is a tasked tvpe 

derived from either Controlled or Limited-Controlled, two types defined in the 

built-in package Ada.Finalization. Limited-Controlled has two primitive op- 

erations: Initialize and Finalize. These operations have null-body implemen- 

tations which may be overridden as necessary for descendent types derived from 

Limited-Controlled. While the exact details are quite involved. Ada basically as- 

sures that an Initialize operation is automatically called when an object of a con- 

trolled type comes into existence. Similarly. Ada assures that a Finalize operation 

is automatically called immediately before a controlled type object ceases to exist. 

Abstract kernel components derive their exported type from Limited-Controlled 

with a /;//// rtcord extension in the pricaii part of the package. The private derivation 

assures that Initialize and Finalize cannot be called explicitly by clients. The null 

record extension adds no data representation to the type Limited-Controlled and thus 

effectively leaves the data representation of the exported typo unspecified. (Due to 

Ada accessibility rules, the derivation from Limited-Controlled must take place in 

the abstract kernel component and cannot be placed in a concrete component, which 

would be a more appropriate location.) In order to derive the exported type from 

Limited-Controlled, the package encoding a kernel abstract component uses the 

built-in package- Ada. Finalization. The with contest clause in the- rjlohnl context 

sietion of RAf).") components expresses this uses relationship. In RESOLVE, the 

global context section lists all non-parametric dependencies. We discuss the uses 
relationship in RA0Ö in Section o,:\. 

In addition to the implicit operations Initialize and Finalize inherited from 

Limited-Controlled, all abstract kernel components explicitly export Swap and other 

(ihsfrnef alterations. An Ada abstract operation is a primitive operation that must be 

overridden with an implementation for a non-abstract type derived from the abstract 

type. I he exported abstract typo and abstract operations along with formal speci- 

fications embedded in structured comments provide the kerne! abstract component's 

signature and behavioral specification. 

Abstract kernel components are typically abstract templates parameterized In- 

other components. These abstract templates an- encoded in RAO.") as generic pack- 

age-. The abstract template parameters art- included in a specification parameters 

sfctirw and are encoded as Ada generic formal parameters. Each component imported 

as a specification parameter is encoded as a limited prirate (jeneric formal fi/pe pa- 

rani'tir. Each generic formal type parameter must have an associated ipneric formal 

siihpi-ot/rarn parameter importing the Swap operation for that type. Other generic for- 

mal subprograms may be used to place constraints on imported components. Ada's 

subprogram defatdt box specification (<>) is used with all generic formal subpro- 

gram- to simplify generic package instantiation. We discuss specification parameters 
further in Section To. 



The name of a kernel abstract component is the name of the abstraction being 
described, prefixed with AT_ or AI_, depending on whether it is an abstract template 
or an abstract instance. For example, AT_Queue is the package name of a kernel 
abstract component describing a queue. The name of the exported type is usually 
the name of the abstraction being described. For example, the type exported from 
AT_Queue would be named Queue. In some cases, the type name may be shortened 
to improve the readability of the code. Note that an abstract template only requires 
a package specification and no associated package body. 

Figures 5.1 and 5.2 show the RA95 code for the AT_Queue component. The only 
aspect of this code not described above is the design choice of which operations should 
be primary operations included in the kernel component. The choice of primary oper- 
ations for AT_Queue reflects the RESOLVE design principle that a kernel component 
should be as simple as possible while providing a client controllability and observabil- 
ity over the component's abstract state [WEH+96]. While other queue operations will 
inevitably be useful in various contexts, these secondary operations may be added as 
extensions and implemented by layering on top of the primary operations provided 
by the kernel component. 

5.3    The RESOLVE/Ada95 uses Relationship 

As we have mentioned before, Ada's with clause is the primary mechanism for 
encoding the uses relationship between two Ada packages. However, since one of the 
goals of the RESOLVE discipline is to minimize fixed design dependencies, the uses 
relationship is employed quite sparingly in the design of RA95 components. In order 
to minimize coupling and maximize reusability, the RESOLVE discipline suggests 
that components (abstract and concrete) be fully parameterized [SW94, pp. 34,40]. 
That is, all dependencies which can be deferred should be deferred rather than fixed. 
In terms of software component relationships, this means that, whenever possible, 
components should be designed with dependencies expressed in terms of the needs 
relationship rather than the uses relationship. Usually, a uses relationship between 
two RA95 components either is associated with a needs, implements, or extends 
relationship (as discussed in subsequent sections), or is a dependency on a component 
in Ada's predefined language environment (a built-in package). 

The abstract template AT_Queue shown in Figures 5.1 and 5.2 uses two Ada built- 
in packages. The with clause in the global context section explicitly documents a fixed 
dependency on the package Ada.Finalization as discussed in Section 5.2. There is 
also an implicit dependency on the built-in package Standard which defines all of 
Ada's pre-defined identifiers, primarily those of the built-in types and operations. In 
this case, AT_Queue requires visibility to the Standard package for the definition of 
the type Integer referenced in the declaration of the Get_Length procedure. All 
Ada packages have implicit visibility to Standard.   No "with Standard" clause is 

117 



Corper.cr.t 
F.ciati or. s 

Ccrr~cr.ts 

S:i_QuCUC 

Cl oba 1   Cor. t ex; 

with  Aria . TLr.al izatior 

generic 

Sped fi ca t i on   Paramc t crs 

type izc~   is limited private; 
with procedure Sv:ap (left, right : in out Item) is <>; 

package A._Qucue is 

type Queue is abstract tagged limited private; 

type Queue  is modeled by string of  Item 
exemplar  q 
initialization   ensures 

q  =   cmpty_string 

procedure Er.qucue ( 
q : in out Queue, 
>: : in out Item 

) is abstract; 

.' alt crs  q 
!   consumes  x 

q  =   Pa   *   <'--x> 

Figure ■").]: Package Specification for AT.Qu (MIC 



procedure Dequeue ( 
q : in out Queue; --.' alters  q 
x : in out Item --.' produces x 

)   is abstract; 

requires 
q /=  empty_string 

ensures 
#q =  <x>   *  q 

procedure Get_Length ( 
q      : in out Queue; --.' preserves  q 
length : in out Integer        --.' produces  length 

) is abstract; 

--.' ensures 
--'. 1 ength  =   \q\ 

procedure Swap ( 
left  : in out Queue; --.' alters  left 
right : in out Queue --.' alters  right 

) is abstract; 

--.' ensures 
--.'     left  =  #right  and right   =  ileft 

private 

type Queue is abstract new Ada.Finalization.Limited_Controlled 
with null record; 

end AT_Queue; 

Figure 5.2: Package Specification for AT-Queue (Continued) 
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necessary. In CT'D's. we do not depict uses relationships involving the Standard and 

Ada.Finalization packages. 

I nlike RI.SOIA I-.. Ada does not provide a swap operation for built-in tvpes. 

In order for a built-in type to serve as an actual package parameter in compo- 

nent composition, the Swap procedure must be available. The special RA0Ö pack- 

age CI^Scalar_Operations provides Swap procedures for the Ada built-in types: 

Boolean. Integer. Character, and Float. This package also provides (in procedure 

form) commonly used operations for copying, equality testing, and order testing. As 

discussed in Section Ö.2. Ada functions with in-mode only parameters present serious 

problems for component composition in RA0Ö. We discuss a related issue, automatic 

initialization of built-in scalars. in Section ö.f). 

5.4    The RESOLVE/Ada95 implements Relationship 

In RAf).">. concrete components are either ranerefe kernel cnnipnticnls or imple- 

mentations of abstract extension components. This section describes concrete kernel 

components and expression of the implements relationship between concrete and ab- 

stract kernel components. Section 5.0 describes concrete components that implement 
abstract extension components. 

RAD") concrete kernel components, implementations of abstract kernel compo- 

nents, are encoded in Ada as f/enerie rhiltl unit jxiekai/es. A concrete kernel com- 

ponent is a generic child unit of the abstract kernel component that it implements. 

As discussed in Sections 3.3 and !.3. a single concrete component may implement 

more than one abstract component. In RA0Ö. however, each implementation is per- 

manently linked to a single specification that it implements. Thus, an implements 

relationship is encoded directly into each concrete component in RAflö. Limiting each 

concrete template to a single implements relationship sacrifices little in practice and 
results in simpler RAD.") code. 

Child units are a part of the hiemrehieal Jihrorn structure added to Ada in the 

ion.", language definition. A child unit is an Ada package that has full visibility to 

the package specification of another unit, its parent unit. Since a child unit mav 

be the parent unit to other child units, a hierarchy of related library units mav be 

constructed. Thus, a child unit uses its parent unit as well as any other units above 

it in the hierarchy (e.g.. its parent unit's parent unit). The association of a child unit 

to its parent is encoded by the package name of the child unit. A child unit package 

name has as a prefix its parent unit's package name followed by a period. Thus, 

the package AT_Queue.CT.2 is a child unit of the package AT_Queue. As a child unit. 

AT_Queue.CT_2 has implicit visibility to all of the AT_Queue package specification, 

including generic formal parameters and the private part. A child unit does not need 

a with clause for visibility to its parent unit. 
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AT Queue 

I 
D 

implements 

AT_Queue.CT_2 

Figure 5.3: The implements Relationship in RA95 

RA95 concrete component names encode (the claim of) an implements relation- 
ship. The package name ATLQueue. CT_2, for example, identifies the "second" concrete 
template that implements the queue abstract template. (The name is best inter- 
preted from right to left.) By RA95 convention, numbers are used to distinguish 
concrete templates which serve as multiple implementations of the same abstract 
component. Use of this convention helps avoid long and possibly misleading compo- 
nent names. Figure 5.3 shows the component coupling diagram depicting the imple- 
ments relationship between concrete template AT_Queue . CT_2 and abstract template 
AT_Queue. 

Recall from Chapter 3 that a CCD depicts design dependencies that are inde- 
pendent of any particular use of the components involved. In contrast, a component 
instantiation diagram (CID) shows how the components in a particular system are 
coupled with each other. Figure 5.4 shows the RA95-specific component instantiation 
diagram depicting the parent-child relationship between abstract and concrete kernel 
components. Note that this parent-child relationship is not a component relationship; 
it is merely one possible technique useful for expressing the implements relationship 
in Ada. In this example, the abstract parent unit AT_Queue is enclosed in the concrete 
child unit AT_Queue.CT_2. This notation conveys the idea that the definition of the 
child unit "includes" that of the parent unit. 

CID's, like CCD's, depict abstract components with clear rounded boxes and 
concrete components with shaded rectangular boxes. Specification parameters are 
shown as arrowheads along the top of abstract components. In Figure 5.4, Item 
is the only specification parameter shown. The generic subprogram parameter for 
Swap for type Item is implied since all RESOLVE types provide Swap. The type 
exported from a component is shown as an arrowhead on the right side of the box. 
Implementation parameters (discussed later in this section) are shown as arrowheads 
along the bottom of concrete components. A more detailed version of this notation 
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AT_Queue.CT_2 
 ^ AT One Way List 

Figure ~).-\: Concrete Child Coupled To Abstract Parent 

(not shown) includes the names of each exported operation in the lower right corner 

of the box. C'ID's in subsequent sections will build upon this diagram. 

An PAD-") concrete kernel component exports a concrete type and concrete primi- 

tive operations ofthat type. The concrete type exported is a private ti/pr extension 

of the abstract type exported by its parent unit. The type extension forms an inheri- 

tance link between the concrete and abstract types. This link is depicted in Figure 5.4 

as the line connecting the abstract type exported from AT_Queue (AT_Queue. Queue) 

tu the concrete type exported from AT_Queue .CT_2 (AT_Queue . CT_2 . Queue). This 

inheritance link requires the child unit implementation to provide concrete primi- 

tive operations conforming (structurally) to the abstract type's abstract primitive 

operations. Therefore1, an Ada compiler will ensure that a concrete component at 

lea-t provides the structural interface- described by the abstract component that it 

implements. Of course. Ada compilers provide no help in checking whether a con- 

crete component actually provides the behavior specified by an abstract component. 

The formal semantics, proof rules, and specification sub-language of the RESOLVE 

lammaee (\n provide support for formally verifying the implements relationship, 
though. 

I nlike abstract components, concrete components require both a package spec- 

ification and a package body. The package specification includes a public interface 

s'efiren in which the exported type is derived from the abstract type exported bv 

the p;irent unit. Placing this type derivation in the public section provides a partial 

eine of the exported type. The partial view provides a client of the implementa- 

tion visibility to the exported concrete operations, but not to the type's private data 

representation. The interface section also includes a concrete subprogram header cor- 

responding to each abstract operation in the parent unit. The package body includes 

all of the corresponding subprogram bodies. The package body also may include a 

local o])i rations section for local (private) subprograms used internally to implement 

the exported operations. 
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The private part of the package specification includes a representation section 
and an implicit operations section. The representation section defines the data struc- 
ture used to maintain state information for each object declared from the concrete 
component. The full view of the exported type is a single field record extension of 
the abstract type in the parent unit. To ensure composability of components, the 
single-record extension field is always named rep. The type of the rep field is the 
type of the component's data representation. If the representation has more than one 
constituent component, the components are encapsulated in a single RA95 Recordn 
component which serves as the type of rep. Recordn components are special RA95 
components that export Swap and field selection operations. Recordn components 
compose with other RA95 components and are responsible for encapsulating vari- 
ous memory management strategies. Formal comments in the representation section 
describe the implementation's convention and correspondence. The convention spec- 
ifies any representation invariants and the correspondence describes the abstraction 
relation, a mapping between the representation states and the model states. 

The implicit operations section is where the inherited Initialize and Finalize 
operations may be overridden, if necessary. The exported concrete type inherits con- 
crete null-bodied implementations of these operations from its abstract parent (which 
inherits them from Limited-Controlled). For typical components, the inherited 
Initialize and Finalize provide the correct behavior. However, some components 
will need to explicitly override these operations, especially Initialize. 

Since a concrete kernel component is a child unit of an abstract kernel compo- 
nent, it has direct visibility to any specification parameters. Thus, the specification 
parameters are implicit parameters to the concrete kernel component. This idea is 
conveyed in Figure 5.4 since the specification parameter Item on the top edge of 
AT_Queue is also on the top edge of AT_Queue.CT_2. In addition to implicit specifica- 
tion parameters, a concrete component also may have additional parameters which, 
if present, are included in the implementation parameters section. Implementation 
parameters are encoded in RA95 as generic formal packages, types, and subprograms 
for which actual parameters must be supplied through instantiation. We discuss how 
implementation parameters are used to encode the needs relationship in Section 5.5. 

Figures 5.5 and 5.6 show the package specification for the concrete template 
AT_Queue. CT_2 which implements AT_Queue shown in Figure 5.1. Figures 5.7 and 5.8 
show the package body for AT_Queue. CT_2. These may be compared with the similar 
concrete template implementing a stack shown in Figure 3.11. We discuss the needs 
relationship encoded by this component in the next section. 

5.5    The RESOLVE/Ada95 needs Relationship 

As we discussed in Section 5.3, a fixed dependency on an Ada program unit 
is encoded in RA95 by a with clause in the global context section.   For example, 

123 



Cc~.por.cr. t:   AT_Qucue. CT_2 
Relations:   implements  AT_Qucuc,   needs  AT_Onc_Way_List 

Cor~.cr.zs:   queue  implemented with  a   Onc_Way_List   representation 

■-   Global   Context 

with A7_0r.e_V.'3y_List; 

generic 

Imp 1 cr.cn tat ion   Pa ramc t crs 

with package AI_OriC_V.Tay_List is new AT_Onc_Way_List (Item => Iter 

type list is new AI_Onc_Way_List.List with private; 

package A._Qucuc. C7_2 is 

:crracc 

type Queue is new A7_Qucuc.Queue with private; 

procedure nr.cucjc ( 
q : in out Queue; 
>: : in out Item 

procedure Dequeue ( 
c : in out Queue; 
x : in out It err. 

) ; 

Figure 0.."): Package Spcvification for AT-Qu<>U(\CT_2 

121 



procedure Get_Length ( 
q      : in out Queue; 
length : in out Integer 

); 

procedure Swap ( 
left  : in out Queue; 
right : in out Queue 

private 

-- Representation 

type Queue is new AT_Queue.Queue with 
record 

rep : List; 
end record; 

convention 
true 

correspondence 
q =  q.rep.left   *  q.rep.right 

Implicit  Operations 

Inherited null-bodied Initialize and Finalize 

end AT_Queue.CT_2; 

Figure 5.6: Package Specification for AT_Queue.CT_2 (Continued) 
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-.el a tier.: 
AT_Qucuc. CT_2 
implements  AT_Qucuc,   needs  AT_Onc_Way_List 
queue  implemented with  a  Onc_Way_List   representation 

Global   Cor. 

package  body  A7_Qucue.CT_2   is 

ir.nlicit   Ooerations 

Inherited null-bodied  Initialize  and Finalize 

interface   Ooerations 

procedure   Enqueue   ( 
q   :   in  out   Queue; 
x   :   in  out   It err, 

)    is 
begin 

Kovc_To_Finish   (q.rcp); 
Adc;_Right    (ci.rcp,   x); 

end   Er.qucuc; 

procedure   Dequeue   ( 
q   :   in  out   Queue; 
x   :   in  out   Item 

)   is 
begin 

"T/e_7o_SLart    (q.rcp); 
Re-ovc_Ri ght    (q.rep,   x) 

end   Dequeue; 

Figure Ö.7:  P;ick;inc> Body for AT.Qiinio.CT.'i 
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procedure Get_Length ( 
q      : in out Queue; 
length : in out Integer 

) is 
begin 

Move_To_Start (q.rep); 
Get_Right_Length (q.rep, length); 

end Get_Length; 

procedure Swap ( 
left  : in out Queue; 
right : in out Queue 

) is 
begin 

Swap (left.rep, right.rep); 
end Swap; 

end AT_Queue.CT_2; 

Figure 5.8: Package Body for AT_Queue.CT_2 (Continued) 

dependencies on standard Ada library units such as Text.IO (which defines standard 
input and output routines) must be encoded as fixed dependencies. Even so, many 
of Ada's standard library units are generic units or units exporting abstract types 
(such as Ada.Finalization used by AT_Queue in Figure 5.1) and thus are structural 
specifications of many possible implementations. 

The needs relationship expresses a deferred dependency - dependence on a spec- 
ification of behavior rather than on a specific implementation of behavior. In RA95, 
as in RESOLVE, the needs relationship is encoded using parameterized components. 
However, RA95 uses Ada's type extension (inheritance) to constrain concrete compo- 
nents serving as actual parameters to be implementations of the appropriate abstract 
component. This approach was not possible in RA83 which used (potentially long) 
lists of generic formal subprogram parameters to constrain type parameters [Hol92]. 
Nevertheless, encoding the needs relationship in RA95 is somewhat complex as it 
makes use of a combination of several of Ada's more advanced language mechanisms. 

The uses relationship between a concrete template and an abstract component is 
encoded in RA95 using a pair of related generic formal parameters and a with clause 
in the global context section. The with clause names the abstract component upon 
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which tlir implementation depends. The first generic parameter is a </cnrric formal 

}inr};n(ji piirnmrii r and the second is a i/currir formal drrirnl ti/pr. Both of these 

generic parameters are new language mechanisms added to Ada in the 190.") language 

definition. "] he actual parameter corresponding to the formal package parameter must 

he an instance of the abstract package component being used. The actual parameter 

corresponding to the formal derived type must be a tagged type derived from the 

abstract type exported by the first actual parameter. Together, these two parameters 

ensure that the imported type has all of the primitive operations specified in the 

abstract package. Therefore, the imported concrete type is constrained to have been 

exported from a concrete component which implements the abstract component 

beim: used. Of course, only the structural aspects of the implements relationship 

are checked by the compiler. 

Figure 5.9 shows a C'C'I) depicting the uses relationship between the concrete 

template AT_Queue. CT_2 and the abstract template AT_0ne„Way_List. The CT.2 im- 

plementation of AT_Queue uses a One„Way_List as its representation as shown in 

Figures 5.5-5.7. One Jr/ay .List is a list abstraction that supports list traversal in one 

direction (thus allowing singly-linked list implementations). It is modeled by a pair of 

strings which conceptually represent the left and right parts of the list. Traversing the 

list from left to right is modeled by moving the leftmost item in the right string to the 

rieht most item in the left string. Thus, the current position within a One_Way_List 

may be viewed as just to the left of the leftmost item in the right string. 

AT_0ne_Way_List specifies the following operations: 

• Advance moves the current position one item to the right. 

• Kove_To_Finish moves the current position to the right of the rightmost item. 

• Kove_To_Start moves the current position to the left of the leftmost item. 

• Add_Right inserts an item at the left cud of the right string. 

• Remove-Right removes the item at the left end of the right string. 

• Get_Left_Length returns the length of the left string, and 

• Get„Right_Length returns the length of the right string. 

Figures 5.5-5.8 demonstrate how the needs relationship depicted in Figure 5.9 is 

encoded in RA95. The with clause in the global context section (Figure 5.5) expresses 

the fixed dependency of AT_Queue. CT_2 on the specification AT_0ne_Way_List. The 

first generic parameter in the implementation parameters section is the formal package 

AI_0ne_Way_List. The actual parameter corresponding to this formal must be a 

package which is an instance of AT_0ne.Way_List. Furthermore-, this instance must 

have been instantiated with the same Item type as the instance of AT_Queue which 
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AT Queue.CT 2 

I needs 

AT_One_Way_List 

Figure 5.9: The needs Relationship in RA95 

serves as the parent of an instance of AT_Queue. CT_2. References to AT_Queue within 
AT_Queue. CT_2 refer to the instantiation of AT_Queue that serves as the parent unit 
of the instantiation of AT_Queue . CT_2. 

The second generic parameter is the formal derived type List. The actual pa- 
rameter corresponding to List must be a concrete type derived (possibly indirectly) 
from the abstract List type exported by the package serving as the actual param- 
eter to AI_One_Way_List. Note that in a component instantiation diagram, a single 
implementation parameter corresponds to the pair of generic parameters required to 
express the needs relationship. For example, in Figure 5.4, the single implementation 
parameter AT_One_Way_List expresses the needs relationship just described. 

At the programming language level, this encoding of needs assures that the im- 
ported List type comes with implementations for all of the operations specified 
in AT_One_Way_List. In terms of component relationships, this strategy encodes 
AT_Queue.CT_2's dependency on the behavior specified by AT_One_Way_List without 
making AT_Queue. CT_2 dependent on a specific implementation of AT_One_Way_List. 
In Sections 5.7.1 and 5.8 we present examples of how RA95 components may be 
composed through instantiation of concrete templates. 

5.6    The RESOLVE/Ada95 extends Relationship 

In this section, we first discuss how the extends relationship is encoded between 
two abstract components in RA95. Then, we discuss how a layered implementation 
of an abstract extension component is encoded. We present example RA95 code for 
both types of components. 

5.6.1    Abstract Extension Components 

The RESOLVE discipline encourages careful design of kernel components with a 
minimally sufficient set of primary operations.   New functionality is then added — 
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usually one operation ;it a time with components which extend the behavior of 
existing coni])onents. The ideal choice of primary operations for a kerne] component 
is seldom obvious. One possible approach is to design kernel components with no op- 
erations (just an exported type), and then to add all operations as extensions. This 

approach is being used with RESOLYE/C'-M- [Wei!)?]. The RESOLVE/Ada!).! disci- 
pline currently takes the more conventional approach of including primary operations 
with the kernel component, as described in Section 5.2. 

I lie extends relationship describes the behavioral relationship between two ab- 
stract components as discussed in Section 3.5.1. Encoding the extends relationship 
usine the language mechanisms of Ada presents some challenges. Difficulties arise pri- 
marily from needing to rely on Ada's single inheritance mechanism, type extension. 
One of the difficulties encountered when attempting to encode component relation- 
ships in Ada involves the expression of multiple relationships for a single component. 
Ada does not directly support multiple inheritance, which has proven useful in RE- 

SOIA E-'C--. and does not distinguish between specification inheritance (structural 
interface conformance) and implementation inheritance, as do newer OOPL's. such 
as .lava. 

RA95 uses mirin iiihcrH/mrc to express multiple dependencies [Int!)5a. fj-l.G.2l. 
Mixm inheritance is expressed in Ada by deriving an exported type from another 
type imported as a generic parameter. In order to apply multiple extensions to a 
component, use of mixin inheritance requires chaining extensions together to form a 
linear inheritance path. To support structural interface conformance of each concrete 
extension component to an abstract extension component requires an inheritance 
chain that alternates between abstract and concrete types. 

An abstract extension component is encoded in RA95 as a generic child unit of 
the abstract component it extends. By convention, the package name of the child unit 
is the name of the parent unit followed by a period, followed by the string "With.", 
followed by a name describing the new functionality. For example, the abstract tem- 

plate AT_Queue.With_Reverse extends AT_Queue by a specification of the queue re- 
verse functionality. In general, it might be possible for a single abstract extension 
component to extend more than one abstract component. In RA95. however, each ab- 
stract extension is permanently linked to a single specification that it extends. Thus, 
the extends relationship is encoded directlv into each abstract extension component 
in RA95. 

Figure 5. K) shows the R A95-specific CID depicting the parent-child relationship 
between a kernel abstract component and an abstract extension component. In this 
example, the abstract parent unit AT.Queue is enclosed in AT_Queue. WithJleverse. 
the abstract child unit. Figure Ö.H) appears similar to Figure 5.4 since RA95 uses 
similar language' mechanisms, type extension and hierarchical library units, to encode 
implements and extends. The primary difference is that AT_Queue .With.Reverse 
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~~7 ▼ Item        ~\ 
Queue 

AT Queue   ► 

AT Queue.With_Reverse 

Figure 5.10: Abstract Parent and Abstract Child Extension 

exports an abstract type whereas AT_Queue. CT_2 exports a fully-implemented con- 
crete type. 

The specification parameters section of an abstract extension component has a 
single specification parameter which serves to support chaining of extensions. This 
parameter is encoded as a formal generic derived type. The name of the formal pa- 
rameter is the name of the exported type prefixed with the string "Base_". The actual 
parameter corresponding to this formal parameter is constrained to be a concrete type 
derived from the abstract type exported by the abstract parent unit being extended. 
For example. AT_Queue.With_Reverse, shown in Figure 5.10, has the specification 
parameter Base_Queue. The dotted line between the type exported from AT_Queue 
and the line extending from the specification parameter conveys the constraint on the 
actual parameter for Base_Queue. Note that the actual parameter need not be derived 
directly from the abstract type exported by (an instance of) the parent unit. The 
actual parameter may be the result of many extensions to that type. This flexibility 
allows multiple extensions of the same abstract component to be chained together. 

The interface section of an abstract extension component includes an exported 
abstract type publicly derived from the formal generic type parameter. The name 
of the exported type is the same as the name of the abstract type from which it is 
derived. (The exported type's full name includes its package name, thus distinguishing 
it from its parent type.) This derivation provides the mixin inheritance. Furthermore, 
the exported type is a null record extension of the type imported by the generic 
parameter. The null record extension means that the abstract extension component 
does not augment the representation of the imported type. In Figure 5.10, the line 
connecting the Base_Queue specification parameter to the abstract type exported 
by AT_Queue.With_Reverse depicts the mixin inheritance link. The abstract type 
exported by an instance of AT_Queue.With_Reverse has as primitive operations the 
abstract queue reverse operation specified in the extension plus all concrete operations 
of the type used as the actual parameter for Base_Queue. 

The remainder of the interface section includes usually one, but possibly more, 
abstract subprogram specifications.   Each subprogram specification corresponds to 
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an operation proviflin.o; new functionality to the abstract fompciiuMit being extended. 
Structured comments formally describe the functional lx-liavior of the abstract opor- 
at inns. 

I-mure 0.11 shows the Ada package specification encoding the abstract template 
AT_Queue.With..Reverse. Xo package body is required as with abstract kernel com- 
ponents. Note that normally the added operation to reverse a queue would be named 
Reverse instead of Reverse_Queue. Since reverse is a reserved word in Ada. how- 
ever, it cannot be used as an operation name. Also note that reverse is a built-in 

operation of the string theory mathematics in RFSOLYF's specification sub-language. 
1 hi- explains how the ensures clause of Reverse_Queue may be expressed so concisely. 

5.6.2    Implementation of Abstract Extension Components 

Recall from Section 3.Ö.2 the three approaches to implementing an extension com- 
ponent: layered, direct, and coupled implementations. Since the RESOLVE discipline 
primarily advocates use of the layered approach, the strategy for encoding the ex- 
tends relationship in RA0Ö was designed to best support layered implementations. 
In thi> section we discuss how to encode a layered implementation of an abstract 
extension component. 

The layered implementation of a concrete extension component is encoded in 
RAO.") as a generic child unit of the extension component it implements. The pre- 
fix of child unit's package name is the name of the abstract extension component 
(the parent unit name) followed by a period. .lust like implementations of kernel 
components, the name ends with the string "CT_" followed by a number identifying 
tin- specific implementation. For example, the concrete extension component name 
AT_Queue.With.Reverse.CT_l denotes the first concrete template that implements 
the reverse component that extends the queue abstract template. Again, the compo- 
nent name is best interpreted from right to left. 

I'icure Ö.12 shows the RAOVspecific CID depicting the parent-child relationships 
between a kernel abstract component, an abstract extension component, and a layered 
concrete extension component. In this example, the abstract extension component 
AT_Queue.With_Reverse (Figure •>..]) is enclosed in AT_Queue.With_Reverse.CT_l. 
the concrete child unit. 

A concrete extension component consists of a package specification and body 
which are similar in structure to those of a kernel concrete component. The package 
specification includes an interface section, a representation extension section, and pos- 
sibly an implementation parameters section. The interface section includes a concrete 
exported type and concrete subprogram specifications. Just as with kernel concrete 
components, the exported type is a private typo extension of the abstract type ex- 
ported by its parent unit. This inheritance link is shown in Figure 5.12 as the lino 
connecting the abstract type exported from AT_Queue. With_Reverse to the concrete 
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Component:  AT_Queue.With_Reverse 
Relations:   extends AT_Queue 

Comments:    'Reverse'   is  an Ada  reserved word,   hence Reverse_Queue 

Global  Context 

generic 

-- Specification  Parameters     

type Base_Queue is new AT_Queue.Queue with private; 

package AT_Queue.With_Reverse is 

-- interface    

type Queue is abstract new Base_Queue with null record; 

Added Operations 

procedure Reverse_Queue ( 
q : in out Queue --.' preserves  q 

)   is abstract; 

--.' ensures 
--.'     q = reverse (#q) 

end AT_Queue.With_Reverse; 

Figure 5.11: Package Specification for AT_Queue.With_Reverse 
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(              f                      ▼ l«em          \Y_iasO 
„   ^            Queue       Queue 
AT Queue   ► '     ► 

V                    ) 
AT Queue.With Reverse 

^                                                ) 

AT_Queue.With_Reverse.CT_1 

AT Stack 

Figure .",.12: Abstract Parent and Concrete Child Extension 

type exported by AT_Queue.With_Reverse.CT_l.    In this example, both types arc 
named Queue (as is the type exported by AT_Queue). 

Derivation of the exported concrete type in the public part of the package pro- 
vides a partial view of the type and ensures that the concrete« operations imported bv 
the parent unit are re-exported along with the concrete exported type. For example, 
the actual parameter for Base_Queue in Figure .",.12 may include many extensions 
to AT_Queue. However, the body of AT_Queue.With_Reverse.CT_l only has visibil- 
ity to the operations described by AT_Queue. With_Reverse (which include those of 
AT.Queue). 

The interface section also includes one concrete subprogram specification corre- 
sponding to each abstract operation added by the parent unit to describe new func- 

tionality. I he representation extension section is in the private part of the package 
and contains the declaration of the exported type providing its full view. The exported 
type is a null record extension of the abstract type exported by the parent unit. The 
implementation parameters section, if present, serves the same role as in kernel con- 
crete components. Figure Ö.J2 shows the implementation parameter AT_Stack used 
to express the needs relationship AT_Stack. Thus. AT_Queue.With_Reverse.CT_l is 
layered on top of implementations of both AT_Stack and AT_Queue. 

The package body of a concrete1 extension component includes one subprogram 
body corresponding to each added operation. Like its kernel component counterpart, 
it also may include a local operations section to provide local subprograms used to 
implement the exported operations. 

ligure T13 shows the Ada package- specification for the concrete extension com- 
ponent AT_Queue.With_Reverse.CT_l. Figure ö.bl shows the corresponding package 
body with the layered implementation of the Reverse.Queue operation. 
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-- Component:   AT_Queue.With_Reverse.CT_l 
-- Relations:   implements AT_Queue.With_Reverse,   needs AT_Stack 

Comments:  Reverse_Queue reverses a  queue using a  stack 

__ Global   Context     

with AT_Stack; 

generic 

-- Implementation  Parameters     

with package AI_Stack is new AT_Stack (Item => Item); 

type Stack is new AI_Stack.Stack with private; 

package AT_Queue.With_Reverse.CT_l is 

__ interface    

type Queue is new AT_Queue.With_Reverse.Queue with private; 

-- Added Operations     

procedure Reverse_Queue ( 
q : in out Queue 

private 

-- Representation Extension     

type Queue is new AT_Queue.With_Reverse.Queue with null record; 

end AT_Queue.With_Reverse.CT_1; 

Figure 5.13: Package Specification for AT_Queue.With_Reverse.CT_l 
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Comper.cr. t :   7-.T_Qucuc . Wi th_Rcvcrsc . CT_1 
Relations:   implements  AT_Queuc .With_Rcvcrsc,   needs  AT_Stack 

Cor~.er.ts:   Rcvcrsc_Qucuc  reverses  a  queue  using a   stack 

package body AT_Qucuc.With_Rcvcrsc.CT_l is 

led Ooeratior.; 

procedure Rcvcrsc_Qucuc ( 
q : in out Queue 

) is 
s       : Stack; 
x      : Itc~; 
Icr.gth : Integer : = 0; 

begin 
Got_Ler.gth (q, length) ; 
while length > 0 loop 

alters q,    s,    length 
consumes     x 
maintains   reverse (s)    *   q  =   reverse (its)    *   tiq     and 

length   =   Iql 
decreases   Iql 

Dequeue    (q,    x) ; 
Push    (s,    x); 
length   :=   length   -   1; 

end   loop; 
Get_Length   (s,   length); 
while   length   >   0   loop 

--.'   alters q,   s,   length 
--.'   cor.s-jm.es     x 
--!   maintains  q   *  s   =   liq   *   IIs     and    length  =   Is I 
--!   decreases   Iql 
Pop   (s,   x); 
Enqueue    (q,   x) ; 
length   :=   length   -   1 ; 

end  loop; 
end   ?.cvcrsc_Qucuc; 

end   A._Quoue .V."i th_Rcvcrse.CT   1, 

Figure Ö.M: Package Body for AT_Quni(\\YitliJ}<>vers<\CTJ 

or 



5.7    Other RESOLVE/Ada95 Relationships 

The uses, implements, needs, and extends relationships each address a fun- 
damental issue of software engineering. These relationships are likely to appear in 
one form or another in any discipline for component-based software engineering. The 
specializes and checks relationships described in this section arise from following 
the principles of the RESOLVE discipline. The reader unfamiliar with RESOLVE 
may find these two relationships, especially checks, new and interesting. 

5.7.1    The RESOLVE/Ada95 specializes Relationship 

As we discussed in Section 5.3, one of the principles of the RESOLVE discipline is 
that implementations should be fully parameterized. In terms of component relation- 
ships, this means that design dependencies should be expressed in terms of needs, 
instead of uses, whenever possible. In addition to reducing component coupling, 
this approach also supports parametric adjustment of the performance character- 
istics of concrete components [Sit92]. For example, the performance of the queue 
implementation AT .Queue. CT_2 shown in Figure 5.7 depends on which One_Way_List 
implementation a client provides as an implementation parameter. The client of this 
component may "tune" the performance of a concrete component by choosing among 
different implementations of the components it uses. 

The disadvantage of fully parameterized concrete components is that they are 
more difficult for clients to use. For example, most client programmers who want 
to use a queue component in their application will not want to be bothered with 
selecting a list implementation. (The list implementation might also require its own 
implementation parameters, and so on.) The RESOLVE framework solves this prob- 
lem with a specialization component. A specialization component is a concrete com- 
ponent for which some and usually all of the needs relationships have been fixed to 
uses relationships. That is, specialization components are not fully-parameterized. 
A specialization component is produced by internally instantiating implementation 
parameters of a fully parameterized component and then re-exporting the interface 
and behavior of the resulting instantiation. A RESOLVE component library may 
contain several specialization components associated with each fully parameterized 
kernel concrete component. 

The specializes relationship is a special case of the uses relationship. We define 
the specializes relationship informally as follows: 

Concrete component C2 specializes concrete template C\ if and only 
if C2 uses C\ and all behavior implemented by C2 is provided by an 
instantiation of C\. 

A specialization component is a concrete component that specializes another 
concrete component.   The component coupling diagram in Figure 5.15 depicts the 
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specializes 

AT_Queue.CT 2a 

AT_Queue 

I 
] 

implements 

AT Queue.CT 2 

I needs 

AT_One_Way_List j 

Figure 5.15: The specializes Relationship 

specializes irbilionsliip between two concrete components: AT_Queue .CT_2a and 
AT_Queue.CT_2. AT_Queue .CT_2a is a specialization component which depends on the 
fully-parameterized im])leinentation AT.Queue.CT.2. In this example, the special- 
izes relationship indicates that AT.Queue .CT_2a has been created by internally in- 
stantiating AT.Queue.CT.2. Within AT.Queue.CT_2a. one particular component that 
implements AT_One_Way_List must be used as the implementation parameter to 
instantiate AT.Queue.CT.2. The interface and behavior exported by the internal in- 
stantiation of AT.Queue.CT.2 is re-exported as the complete interface and behavior 
of AT.Queue.CT_2a. 

Several implicit relationships not shown in Figure 5.10 may be deduced from 
those shown. First. AT.Queue.CT_2a uses AT.Queue.CT.2 by the definition of spe- 
cializes. Second. AT.Queue.CT.2 also uses some component which implements 
AT_One.Way.List because of the uses relationship shown. Third, and most impor- 
tant. AT.Queue.CT.2a implements AT_Queue because of the implements relation- 
ship shown. Thus, an instance of AT.Queue .CT_2a is behaviorally substitutable for 
an instance of AT.Queue.CT.2 with respect to AT.Queue. Tin- difference between 
these two implementations of AT.Queue is that the non-functional characteristics of 
AT.Queue.CT_2a have been fixed while sonic of the non-functional characteristics of 
AT.Queue.CT.2 may still be adjusted. 

A specialization component is encoded in RA05 as a generic child unit package 
specification. No corresponding package body is needed. The parent unit is the ab- 
stract component which the component being specialized (and thus also the special- 
ization component itself) implements. By convention, the name of a specialization 
component  is the same as that of the component it specializes appended with a 



single letter used to distinguish between multiple specializations of the same compo- 
nent. For example, the name AT_Queue. CT_2c identifies the "third" specialization of 
the "second" implementation of the queue abstract template. 

A specialization component contains a global context section, an interface sec- 
tion, a local instantiations section, and a representation section. Typically all of the 
parameters of the component being specialized are fixed. In this case, there will be 
no implementation parameters section and no generic formal parameters. The fixed 
dependencies on the component being specialized and on the components selected 
to serve as implementation parameters appear as with clauses in the global context 
section. The interface section of a specialization component declares the exported 
concrete type as a private type extension of the abstract type exported by the parent 
unit. This partial view of the exported type assures that a client of this component 
has visibility to all operations described in the abstract parent unit. The implemen- 
tations of these operations are provided in the private part and thus no operations 
need to be declared in the interface section. 

The private part of the package contains the local instantiations and representation 
sections. The local instantiations section contains all package instantiations necessary 
to supply actual parameters to the final instantiation in this section. The final instan- 
tiation creates an instance of the component being specialized. This package instance 
supplies the concrete type to be re-exported by the specialization component. The 
representation section consists of a null record extension of the concrete type to be 
re-exported. This type extension creates the full view of the concrete exported type. 

An example of a specialization component is AT.Queue . CT_2a. This component is 
a concrete template which specializes AT_Queue .CT_2 (Figure 5.5) and uses the spe- 
cialization AT_One_Way_List.CT_la (not shown) to instantiate AT_Queue. CT_2. Note 
that AT_Queue. CT_2a implements AT_Queue. Figure 5.16 shows a component in- 
stantiation diagram detailing how AT_Queue . CT_2a has been implemented. From the 
information summarized in this diagram, it would be straightforward for a tool to 
automatically generate the Ada code for AT_Queue. CT_2a shown in Figure 5.17. 

The local instantiations section of AT_Queue. CT_2a includes three package instan- 
tiations. The first creates AI_One_Way_List, an instantiation of AT_One_Way_List 
with the same Item type as AT_Queue. This instantiation is depicted in Figure 5.16 
by the line connecting the Item specification parameter of AT_Queue to that of 
AT_One_Way_List on the left side of Figure 5.16. The second instantiation creates 
CI_One_Way_List, an instantiation of AI_One_Way_List formed by selecting the "la" 
implementation of AT_One_Way_List. This instantiation is depicted by showing the 
implementation AT_One_Way_List. CT_la around the specification AT_One_Way_List 
in the lower left corner of the figure. The final instantiation creates CI_Queue, 
a concrete instance of AT_Queue .CT_2, the component being specialized. This in- 
stantiation is depicted in Figure 5.16 by placing the AT_Queue. CT_2 implementation 
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Figure ~).\6: A Detailed \"ie\v of ATQueue .CT_2a 

around the AI^Queue s])^cific;ition and by the line connecting the typt- exported bv 
AT_One_Way^List.CT_la to tlie ini])leinentation ])araineter of AT.Queue . CT_2. 

Note that the component name AI„Queue in Figure 5.1G refers to an instance 
of AT_Queue with the type Item fixed. Within the child unit AT_Queue .CT_2a. the 
package name AT_Queue implicitly refers to this package instance, an instance of its 
generic parent unit. In Figure ö.lfi. the line from the type exported by AT.Queue.CT_2 
to the type exported by AT_Queue. CT_2a depicts the inheritance link between these 
two types. The null record type extension at the end of AT_Queue .CT_2a encodes this 
inheritance link. 

5.7.2    The RESOLVE/Ada95 checks Relationship 

I his section describes vlicckiuij components and the associated checks relation- 
ship. Checking components are very useful components within the RESOLVE frame- 
work. Their utility largely results from the layered way in which RESOIA'E compo- 
nents are designed and implemented. 

One of the principles of the RESOLVE discipline is that clients should be respon- 
sible for checking the preconditions of operations. This approach avoids unnecessary 
inefficiency and simplifies component implementations. Furthermore, it respects the 
contractual relationship expressed by the implements relationship. A component 
implementer is responsible for providing all behavior described by the abstract compo- 
nent and no more. If a concrete component must handle exceptional events, then the 
abstract template should describe what behavior is required for exceptional events. 
If a client uses an operation when its precondition is not satisfied, then the concrete 
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--   Component:   AT_Queue.CT_2a 
-- Relations:   specializes AT_Queue.CT_2,   uses AT_One_Way_List.CT_la 

Comments:   - 

Global  Context 

with AT_Queue.CT_2; 
with AT_One_Way_List.CT_la; 

generic 

package AT_Queue.CT_2a is 

-- Interface 

type Queue is new AT_Queue.Queue with private; 

private 

-- Local   Instantiations 

package AI_One_Way_List is new 
AT_One_Way_List (Item => Item); 

package CI_One_Way_List is new 
AI_One_Way_L ist.CT_1a; 

package CI_Queue is new 
AT_Queue.CT_2 ( 

AI_One_Way_List => AI_One_Way_List, 
List => CI_One_Way_List.List 

); 

Figure 5.17: Abstract Template AT.Queue. CT_2a 
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txcprcscr.zaz i or. 

type Queue is new CI_Qucuc.Queue with null record; 

end A._Qucuc.CT_2a; 

Figure ."). 18: Abstract Template AT_Queue .CT_2a (Continued) 

component export inn that operation is free to do anything or nothing from that point 
on. 

Particularly during the testing and debugging of new implementations, unreliable 

code may erroneously call operations with violated preconditions. In RESOLVE, the 

behavior of the implementations is unspecified once1 a precondition violation takes 

place. As a result, locating errors while debugging may be very difficult. Thus, 

checking the preconditions of operations is useful when there is a lack of confidence in 

the correctness of implementations within a software system. A checking component 

addresses this problem by checking operation pre-conditions before calling unprotected 
operation implementations. 

A checking component is a concrete component with characteristics similar to both 

an extension component and a concrete component. Like an extension component, 

it adds new functionality to another component. The additional behavior consists 

of checking to see if a precondition is satisfied, and if not. reporting tin- violation 

and halting execution of the program immediately. Unlike an extension component, 

however, a checking component provides no additional specified behavior. Like a typ- 

ical concrete component, a checking component provides the interface and behavior 

specified by an abstract template. However, a checking component does not directlv 

provide the specified functionality it exports. Instead, a checking component uses 

the abstract template which it implements to provide its exported behavior. That 

is. a checking component is implemented by layering the checking functionality on 

top of a concrete component that provides tin1 desired specified behavior. Therefore, 

a single checking component may be used to check any concrete component which 

implements the abstract component it checks. 

The checks relationship expresses part of the dependency between a concrete 

component and an abstract component. The checks relationship may be defined 
infonnallv as follows: 
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Figure 5.19: The checks Relationship 

Concrete component template C checks abstract component A if and 
only if (a) C implements A and (b) C immediately reports violations of 
all operation preconditions described by A. 

A checking component is a concrete component which checks and needs the 
same abstract component. It is possible to have the relationship C checks A without 
the relationship C needs A. However, such a C, one which directly implements the 
behavior of the component it checks, would not be nearly as useful as a checking 
component. 

The CCD in Figure 5.19 depicts the checks relationship between the checking 
component AT_Queue.CT_0, and the abstract component AT_Queue. The only precon- 
dition specified by AT.Queue is that the Dequeue operation may not be called with an 
empty queue object. Therefore, if a client of AT.Queue. CT_0 tries to dequeue an item 
from an empty queue, an error report will be issued and the program will halt. Note 
that in the case of a checking component, the needs relationship is omitted from the 
CCD. A slightly more complex notation which includes template parameters makes 
explicit this uses relationship for checking components. 

A checking component is encoded in RA95 as a generic child unit of the abstract 
template which it checks. By convention, the package name CT_0 is prefixed by the 
name of its parent unit. Since the child unit has direct visibility to its parent, the 
uses relationship with its parent is implicit. Thus, the global context section in a 
checking component is empty. The implementation parameters section contains a 
single generic formal derived type. The name of this type is the name of the exported 
concrete type prefixed by the string Base_. The actual parameter for this formal type 
must be a type derived from the abstract type exported by the parent unit. Thus, 
the type exported by any component which implements the parent unit may serve 
as an actual parameter. 

Figure 5.20 shows the RA95-specific component instantiation diagram depicting 
the parent-child relationship between a kernel abstract component and its concrete 

143 



~f y  Item "^ 
Queue 

AT_Queue   ► 

AT_Queue.CT_0 
Base Queue 
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cliff-kin- component. In this example. AT.Queue .CT_0 is the checking component for 

AT.Queue. The implementation parameter Base.Queue. like all other implementation 

parameters, is shown along the bottom edge of the concrete component. The dotted 

line conveys the constraint that the actual parameter supplied for Base.Queue must 

he a type derived (possibly indirectly) from the type exported from an instance of 
AT.Queue. 

I lie interface section of a checking component package specification includes the 

'fknation nftlir concrete exported type. The exported type is a null record extension 

»f the imported generic formal type. Thus, the representation of the component 

ii which the checking component is layered is not altered. The inheritance link 

stahlidied by this type extension is depicted in Figure 5.20 by the line connecting 

the Base.Queue implementation parameter to the type exported by AT.Queue .CT.O? 

for each operation with a precondition (aside from ••(rue") in the parent unit, the 

child unit includes a corresponding concrete subprogram signature. These operations 

override those with matching signatures inherited from the generic type parameter. 

11ii> is another use of mixin inheritance. While overriding inherited operations is 

generallv a threat to preserving behavioral substitutability. this overriding is sah- as 

I'Mi-i as the R,\rr> discipline is followed. It is safe because the overriding'opcration 

provide,, the identical specified behavior as the overridden operation, where the pre- 

condition holds (it is permitted to have any behavior where the precondition does not 
holdl. 

The package body of a checking component provides the implementations of each 

ovcrridine operation. Tin- body of each overriding operation first checks to see if 

the precondition for that operation is satisfied. One of RESOLYE's guidelines for 

the selection of primitive operations is that they include any operations necessary to 

check all preconditions. Therefore, the code to check the precondition may be layered. 

Once the check is made, some mechanism must be used to report the error and halt 

the pronram.  if necessary.    The ideal  mechanism  used depends upon  the run-time 



environment in which the RA95 programs will be run. Many Ada compilers provide 
an Assert pragma which is useful for this purpose. 

If there are no precondition violations, the body of the overriding operation calls 
the operation it has overridden. This requires use of Ada's view conversion. Inside 
the body of the overriding operation, a formal parameter of the exported type is 
converted to the type of its parent when used as an actual parameter in the call to 
the overridden operation. 

Figure 5.21 shows the RA95 package specification for the checking component 
AT_Queue. CT_0. Figure 5.22 shows its package body. AT_Queue. CT_0 is a concrete 
template which checks the kernel abstract component AT_Queue shown in Figure 5.1. 
The implementation shown here depends on the Assert pragma as implemented by 
the GNAT Ada compiler. 

5.8    Instantiation of RESOLVE/Ada95 Components 

In this section we briefly explain and provide an example of how RA95 compo- 
nents may be instantiated to form concrete instances which may be used directly in 
applications. Recall that a concrete component is a subsystem implementation for 
which all parameters have been fixed. Thus, a concrete component exports a con- 
crete type which may be used directly by another component or application program. 
In Section 5.7.1, we explained the instantiation of several components within the 
package specification of CT_Queue. CT_2a. These local instantiations were depicted in 
Figure 5.16. Instantiation of components for use by application programs is similar. 

The process of building a concrete instance generally proceeds as follows. First, 
a kernel abstract instance is produced by an instantiation which binds the specifi- 
cation parameters of a kernel abstract template. Then a kernel concrete instance 
is produced by an instantiation which binds a specific implementation to the ker- 
nel abstract instance. This instantiation may involve supplying actual parameters 
for implementation parameters. Then, if necessary, the functionality of the kernel 
concrete instance may be augmented through a sequence of abstract and concrete 
extensions. For each abstract extension, the type exported from the most recently 
constructed concrete instance serves as the actual parameter for the specification 
parameter. Each abstract instance created by an abstract extension must then be 
supplied with an implementation in the same manner as the kernel abstract instance. 
Checking concrete instances may be introduced after the kernel concrete instance has 
been created. A checking component is produced by supplying a concrete instance as 
an implementation parameter to a checking concrete template. 

Figure 5.23 shows a CID depicting the composition of components to form the 
concrete instance CI_Enhanced_Integer_Queue_l. This concrete component pro- 
vides the behavior specified by AT_Queue extended with AT_Queue_With_Reverse and 
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Ccr.por.cn t:   A7_Qucuc. CT_0 
Relations:   checks  AT_Qucuc 

Corr~.cr.ts:   GiYAT  -a   switch must  be  on  when  compiling  this  and  clients 

Choral   Cor. t ex 

generic 

Irr.plc~cr.tation   Parameters 

type 3asc_Queuc is new AT_Qucuc.Queue with private; 

package A7_Qucuc.C7_0 is 

type Queue is new Ba.se_Qucuc with null record; 

Overriding Oocrations 

procedure Dequeue ( 
c : in out Queue; 
x : in out It err. 

end AT Queue.CT 0; 

Figure 0.21: Package Specification for Abstract Template AT.Queue . CT_0 
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Component:  AT_Queue.CT_0 
Relations:   checks AT_Queue 

Comments:   GNAT -a  switch must  be  on  when  compiling  this  and clients 

--  Global   Context 

package body AT_Queue.CT_0 is 

-- Interface  Operations   -- 

procedure Dequeue ( 
g : in out Queue; 
x : in out Item 

) is 
length : Integer := 0; 

begin 
Get_Length (q, length); 
pragma Assert (length > 0, 

"Dequeue pre-condition (q /= empty_string) violated"); 
Dequeue (Base_Queue(q), x) ; 

end Dequeue; 

end AT_Queue.CT_0; 

Figure 5.22: Package Body for Abstract Template AT_Queue. CT_0 

AT_Queue_With_Replica26 (not shown). Note that a component library suitable for 
production use is likely to contain a wide variety of ready-to-use concrete instances, 
especially for common data structures such as queues. Therefore, it is unlikely that 
a component library user would ever need to construct this concrete instance. 

One new notation introduced in this diagram is the striped rectangle containing 
"Integer". This notation is used to distinguish Ada built-in types such as Boolean, 
Integer, Character, and Float from types exported from library components. 

26The Replica operation makes a value (deep) copy of an object. In RESOLVE, this is a usually a 
layered secondary operation. However, the Replica operation required for the built-in type Integer 
is provided by the special package CI_Scalar.Operations. 
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Figure 5.23: A Detailed View of CI_Enhanced_Integer_Queue_l 

The rightmost arrow touching tlie exterior boundary of Figure 5.23 represents the 

Queue type exporter] from CI_Enhanced_Integer_Queue_l. The specified behavior of 

objects of the exported Queue type is the union of the specifications named by the 

clear rounder] boxes through which the chain of arrows travels. The implementations 

providing the actual behavior of objects of this type are named by the shaded rect- 

angular boxes (including that of the built-in type Integer) through which the chain 
of arrows travels. 

The Ada package specification which encodes CI_Enhanced_Integer_Queue_l is 

shown in Figure 5.21. Figure 5.23 graphically depicts this code. The concrete instance 

CI_Scalar^Operations provides Swap and Replica procedures for Aria built-in tvpes 
such as Integer. 

5.9    RESOLVE/Ada95 Design Issues 

The development of the HAD5 approach presented in this chapter involved explor- 

ing many challenging design issues and making some compromises. Type extension 

and hierarchical library units, in particular, presented opportunities and challenges 

not addressed in the development ofRA83. While Ada's good support for modularity 
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Component:   CI_Enhanced_Integer_Queue_l 
Relations:   uses AT_Queue.CT_2a,   uses AT_Queue.With_Reverse.CT_la, 

uses AT_Queue.With_Replica.CT_la 
Comments:   CI_Scalar_Oparations provides  Swap  for built-in  Integer 

Global   Context 

with CI_Scalar_Operations; 
use  CI_Scalar_Operations; 

with AT_Queue.CT_2a; 
with AT_Queue.With_Reverse.CT_la; 
with AT_Queue.With_Replica.CT_la; 

package CI_Enhanced_Integer_Queue_l is 

Local   Instantiations 

-- instantiate AT_Queue with  Integer 

package AI_Integer_Queue is new 
AT_Queue(Item => Integer); 

-- implement AI_Integer_Queue with  CT_2a 

package CI_Integer_Queue is new 
AI_Integer_Queue.CT_2a; 

-- extend AI_Integer_Queue with Reverse 

package AI_Integer_Queue_With_Reverse is new 
AI_Integer_Queue.With_Reverse ( 

Base_Queue => CI_Integer_Queue.Queue); 

Figure 5.24: Package Specification for CI_Enhanced_Integer_Queue_l 
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--   iir.plcr.cr.t  AI_Qucue_With_Ravcrso  with  CT_la 

package  CI_Ir,togcr_Qucuc_With_Rcvcrse   is  new 
-".:_Ir.tcgcr_Qucuc_V.,ith_Rovcrso.CT_la; 

--   extcr.d AI_Intcgor_Qucuc  with  Replica 

package  A:_Ir.tcgcr_Quouc_Wi th_Roplica   is  new 
A:_Ir.tcgcr_Qucuc . Wi th_Rcpl ica   ( 

3asc_Qucuc   =>   CI_Intogcr_Quouc_With_Rcvcrsc.Queue); 

--   ir.plcrr.cnt  AI_Qucuc_With_Roplica   with  CT_la 

package c:_Ir.tcgcr_Queuo_With_Rcvcrsc_And_Rcplica is new 
A:_Ir.tcger_Qucuc_With_Replica.CT_la; 

interlace 

type Queue is new CI_Intcgcr_Qucuc_With_Rcvcrsc_And_Rcplica.Queue 
with null record; 

end C-„;ir.har.ceä_±ntcgcr_Qucuc_l ; 

Figure Ö.2Ö: Package Specification for CI.Enhanced_Integer_Queue_l (Continued) 

rind Kenericity makes it possible to apply much of the RESOLVE discipline using; Ada. 

RESOIA E and Ada arc far from being a perfect match. In this section, we discuss 
some of the major issues faced in the development of RA9Ö. 

5.9.1     Initialization of Built-in Scalars 

Dealini; with Ada's built-in scalar types represented a particularly challenging 

problem. In Ada. controlled types may be used to provide automatic initialization 

and finali/ation for all usrr-drfi,ml types. All types derived from Ada.Finalization's 

Controlled or Limited-Controlled types have automatic initialization and finaliza- 

tion. Except for access types which must be initialized to null. Ada's built-in scalars 



do not have any automatic initialization. In fact, built-in scalars may have initial 
values that are invalid representations of their type [Int95b, §3.3.1(21)]. 

If Ada required a scalar to be initialized to a valid value of its type (not nec- 
essarily a particular fixed value), then for reasoning purposes, the initial value of a 
scalar could be assumed to be a specific undetermined default value and uninitialized 
scalars could have been used in RA95. In this case, scalar types would only lack a 
potentially useful initial value. However, since uninitialized scalars may have invalid 
representations, they cannot be passed as arguments to operations since this might 
raise a Constraint_Error or Program_Error at runtime [Int95b, §13.9.1(9)]. 

In RESOLVE, every variable is initialized to a value of its type at the beginning 
of its scope (upon creation). A common idiom in RESOLVE is to swap the values of 
a local variable and a consumes mode parameter at the beginning of an operation. 
This swap is done to obtain an initial-valued object to return for the consumes mode 
parameter and to ensure finalization of the consumed object before the return. Using 
uninitialized scalars, such a call to Swap could cause a run-time error. 

Ada's Normalize_Scalars pragma defined in the Safety and Security Annex of 
[Int95b] requires variables of each scalar type to be initialized to a specific documented 
value. However, the implementation advice for this pragma recommends that the 
initial value be an invalid value for that type, if possible [Int95b, §H.1(1)]. Thus, 
Normalize_Scalars, which is intended to make it easier to detect use of scalars before 
programmer initialization, advises that compilers do exactly the opposite of what 
RA95 needs upon initialization. Therefore, Normalize_Scalars, when implemented 
faithfully, is of no use for implementing RA95. 

One approach to built-in types, adopted by RESOLVE, is to eliminate built-in 
types from the language [Har90, §3.3.2]. Unfortunately, this solution cannot be used 
with Ada or C++ which rely heavily on built-in types, and is impractical when the 
syntactic sugar that comes with built-in types cannot be duplicated for user-defined 
replacements. 

The solution we chose was to alter compiler source code so that scalars are au- 
tomatically initialized. We modified the implementation of the Normalize_Scalars 
pragma in the publicly available GNAT source code. The modified compiler satisfies 
the requirements of the language definition, although it is in direct opposition to the 
implementation advice provided. This is not an ideal approach due to portability 
issues, but it does not result in the awkward coding style and inefficiencies of the 
alternatives. 

5.9.2    Limitations of Child Units 

The use of generic child units for encoding the implements and extends rela- 
tionships has several advantages. As discussed in Section 5.4, concrete component has 
direct visibility of any specification parameters and other elements within its generic 
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parent unit. Also, the child unit naming convention is convenient. Using; child units, 
however, does present sonic limitations. Ada does not allow the instantiation of a 
parent unit within a child unit of that parent. The parent unit is within the scope of 
the child unit, thus making such an instantiation recursive, and Ada does not support 
recursive instantiation of generic units. As a result, a concrete component cannot cre- 
ate and use an instantiation of a sibling unit for which the parent unit has different 
specification parameters. This precludes specialization components that fix one or 
more specification parameters from being child units of the kernel concept that they 
specialize. While partial instantiation of only implementation parameters works in 
some cases, there are subtle situations where mutual recursion of instantiated units 
can prevent an instantiation that is legal in RESOLVE. 

As an example of this problem, consider the local instantiation of CIJDne_Way_List 
shown in Figure 717 on page Ml. If the implementation. AI_One_Way_List.CT_la in 
this case, were built using an implementation of AT.Queue. then the instantiation of 

CI_One_Way_List would include an instantiation of AT_Queue. Therefore, anv instan- 
tiation of AT_Queue.CT_2 would include an instantiation of AT_Queue which is not 
allowed in Ada. In general, the recursion among two or more components could be 
hidden in deeply layered implementations. While cases of mutual recursion such as 
thi> might not arise frequently, general solutions for avoiding it tend to be too overlv 
const rainiim. 

5.10    Chapter Summary 

In this chapter we demonstrated how the behavioral relationships defined in Chap- 
ter 3 can be encoded in Ada. In doing so. we also presented most aspects of the RE- 
S( )IA E/AdaD.") discipline for software component engineering. Ada is better equipped 
to encode these relationships than most programming languages due to its strong sup- 
port for modularity and parametric polymorphism. However, new language mecha- 
nisms, such as type extension (inheritance) and hierarchical libraries (component 
extension), added to Ada in 190."). have also proven useful for encoding component 
relationships. 

As with languages is the Module-2 family, but unlike most other languages. Ada 
components (packages) must explicitly name any components upon which thev de- 
pend. Ada's with context clause thus serves well for encoding the uses relationship. 
We use Ada's abstract types and abstract operations to encode the structural as- 
pects of an abstract component. Behavioral specifications are recorded in structured 
comments using the RESOLVE specification notation. Ada's type extension (single 
inheritance) and child unit mechanisms are used in conjunction to encode both the 
implements and extends relationships. W'e use mixin inheritance to encode multi- 
ple dependencies with extension implementations. The needs relationship is encoded 
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in Ada using a pair of related generic formal parameters and a with clause encod- 
ing the uses relationship between the concrete template that needs the abstract 
component. 

In Section 5.7, we discussed the specializes and checks relationships which are 
somewhat unique to the RESOLVE approach. These are both special cases of the 
implements relationship. We concluded this chapter with a discussion of several 
RA95 design issues. Even with its extensive assortment of language mechanisms, Ada 
does not provide an ideal level of support for the RESOLVE approach to component- 
based software engineering. 
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CHAPTER 6 

CONCLUSION 

In this chapter we summarize the research conducted for this dissertation and 
present conclusions drawn from it. We then present the contributions of this research 
to the field of computer science, and conclude with a discussion of areas for future 
work. 

6.1    Summary and Conclusions 

This dissertation defends the thesis that component-level maintenance of software 
systems may be based on a small set of behavioral and dependency relationships 
between software components, and that these relationships can be encoded with the 
language mechanisms provided by modern programming languages, although not as 
easily as should be possible. Chapters 2 and 3 address the first part of this thesis. 
Chapters 4 and  5 address the second part. 

In Chapter 2, we developed a relatively simple set theoretic model of behavioral 
relationships between software components. The model does not depend on a spe- 
cific language syntax or semantics. Instead, it assumes that a language syntax and 
semantics are defined. Then the model defines behavioral relationships between com- 
ponents, which may be specifications or implementations, either of which may be 
parameterized or not. The relations defined, imps, exts, uses, and needs, are used 
to model behavioral conformance and dependencies between components. 

Chapter 3 explains how the relations defined in Chapter 2 may be used for 
component-level maintenance of software systems. In order to remove one component 
from a system and replace it with a behaviorally compatible component, components 
must be designed with two relationships clearly documented. First, each component 
in the system that uses the component to be replaced must state its behavioral 
requirement for a suitable implementation. This is the role played by the needs re- 
lationship. Second, each component should state its behavioral conformance to one 
or more specifications. This is the role played by the implements relationship. The 
extends relationship is important for adding new functionality to components, while 
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maintaining conformance to existing specifications, and thus minimizing the effects 
of changes. 

Mildern programming languages do not provide ideal support for encoding the be- 
havioral relationships we define. Chapter 1 describes a variety of approaches to using 

the mechanisms of modern programming languages to encode these relationships. In 
Chapter •",. we demonstrate specifically how the relationships defined in Chapter 3 
can he encoded in Ada. Chapter •"> also presents the HES()LYE/Adaf).~> discipline for 
software component engineering. 

6.2     Contributions 

I he focus of this research has been to define a set of behavioral relationships 
between software components and to investigate ways in which these relationship 
may be encoded using modern programming languages. The primary contributions 
of this research to the field of computer science are as follows: 

A Model of Software Component Relationships 

The model of software component relationships developed during this research 
and defined in Sections 2.2-2.-1 provides a single formal framework capturing the se- 
mantics of relationships between executable program components, specifications, and 
templates. The chief leverage gained by using the model is that the mraninr/ speci- 
fications and templates may be understood in terms of the semantics of operational 
program components rather than just as syntactic transformations of strings of char- 
acters. The model is independent of the language used to encode components and 
the formalisms used to verify the correctness of an implementation. 

Definition of Relationships Supporting Component-Level Maintenance 

1 he component relationships defined in Chapter 3 serve as a basis for component- 
level maintenance of software because they allow dependencies between components 
to be stated in terms of hrharioral requirements, rather than purely syntactic require- 
ment-;. This allows implementation components to be decoupled from each other prior 
to system integration and promotes a clear distinction between design dependencies 
and integration dependencies. The examples presented in Chapters 3 and ö demon- 
strate how these relationships may be used in practice to support the well-established 
software engineering principles of modularity, information hiding, polymorphism, and 
extendibilitv. 



The RESOLVE/Ada95 Discipline 

The RA95 discipline for component-based software development, presented in 
Chapter 5. was developed as part of the research effort documented in this disserta- 
tion. RA95 provides a way for software engineers to apply the principles of RESOLVE 
in a well-supported and widely available programming language suitable for develop- 
ment of large complex software systems. In addition to providing a concrete example 
of how component relationships may be encoded, RA95 illustrates new and inno- 
vate uses of Ada's unique language mechanisms. In particular, RA95 demonstrates 
how parametric polymorphism (in the form of Ada generics) and subtype polymor- 
phism (in the form of Ada type extension) may be used in combination to develop 
well-encapsulated extendible template components. Also, the component instantia- 
tion diagrams presented in Chapter 5 should serve as a useful aid for explaining and 
generating often complex compositions of Ada components. 

6.3    Future Research 

Future work in the area of software component relationships might progress in 
several directions. The following sections each discuss a potential area for further 
research. 

Applying the Model to Physical Components 

An interesting aspect of the component relationship model presented in Chapter 2 
is that appears general enough to apply to physical components as well as software 
components. While physical systems are not symbolic, they do exhibit behaviors 
and their design documents are symbolic. Figure 2.1 on page 15 suggests how the 
implements and needs relationships might be applied in physical systems. Using a 
single behavioral framework to describe both software and hardware artifacts might 
prove useful in dealing with formal models of embedded systems, where the physical 
system being controlled and the embedded software must be analyzed and designed 
together. Such a framework might also lead to a better understand the similarities 
between well-engineered physical systems and well-engineered software systems. 

Extending The Model 

One of the strengths of the component relationship model presented in Chapter 2 
is its relative simplicity. The model is expressive enough to capture the second-order 
nature of templates which matches the full capability of templates in programming 
languages such as Ada and C++. Sitaraman has pointed out, however, a practical 
need for allowing (uninstantiated) template components as parameters to template 
components [Sit92].   Such "higher order" component compositions are expressible 
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within the ACTI model. 1 >ut not within the nioclol presented in Chapter 2. Extending 
the component relationship model to allow expression of higher order compositions 
would l>e ;i worthy avenue of further research. 

Component Relationship-Based Tools 

I lie component relationships presented in this dissert at ion should be very useful 
for organizing and using software component libraries. Current navigation tools such 
as "class browsers", are based on direct coupling relationships, including inheritance 
links. A library navigation tool based on behavioral (semantically significant) rela- 
tionships should be more useful, especially for integration of existing components and 
component-level system maintenance. Designing and implementing a tool based on 
the relationships presented in Chapter 3 would likely be a useful direction for further 
work. 

Another interesting effort would be the design and development of a component 
composition tool that generates instantiation code, such at that shown in Figures 0.2-1 
and .",.2"> on pages 1 10 and 1 .*>(). through graphical manipulation of a corresponding 
component instantiation diagram, such as thai shown in Figure 5.23 on page 148. 

Further Developing RESOLVE/Ada95 

I here are a number of avenues for further development of RAO"). Initial efforts 
to include run-time selectable (dynamically bound) components in RA0"> (including 
effort- by Falis [Fa 19.")]) were not fully successful due the complexity of code required 
and problems with early AdaOö compilers. With improved AdaO") compilers and 
experience with parallel efforts in RESOLYE/C+-K it may be worth re-investigating 
thi> area of research. 

Despite Ada's mismatches with the RESOLVE language, ensuring that RAO") code 
is leeal (portable) Ada code thus far has been a priority in the development of RA0Ö. 
Nevertheless, the public availability of well-documented source code for the GXAT 
compiler offers the opportunity to modify the RA0"> source language so that it is more 
suitable for RESOLYE-style components. As discussed in Section 5.0.1. the GXAT 
compiler was modified to automatically initialize scalars. Modifying GXAT by adding 
Swap (perhaps ,is infix ": = :") as an intrinsic operation for built-in scalars. adding it 
to Ada.Finalization. and allowing "in out" parameters for functions, would make 
RAO."» source code much simpler and the generated object code more efficient. 
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